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ABSTRACT 

 
In this paper, five spectral superresolution (SSR) 

algorithms are compared to verify the availability of SSR 
results as input data in classification. To enhance the spectral 
resolution, SSR algorithms are proposed to increase the 
channel number of multispectral images, which can be 
divided into model-driven and data-driven methods. To 
combine the advantage of these two types of algorithms, we 
proposed an optimization-inspired convolutional neural 
network (OCNN) by unfolding a traditional variational model. 
The proposed method combines data-driven training with 
model-driven optimization together to enhance the spectral 
resolution of high-resolution (HR) multispectral images 
(MSIs) to obtain HR hyperspectral images (HSIs). 
Experiments in both SSR and classification are made to show 
the proposed method is of efficiency and superiority.  
 

Index Terms— Spectral superresolution, Classification, 
Spectral information. 
 

1. INTRODUCTION 
 

Hyperspectral images (HSIs) are famous for the rich 
spectral information because of the finer spectral resolution 
with tens or hundreds of spectral channels and have attracted 
increasing attention in many researches, such as object 
recognition [1], spectral unmixing [2], and classification[3], 
among others.  

But the fine spectral resolution of HSIs is at the cost of 
spatial resolution because of the energy separation of the 
hyperspectral sensors, which makes HSIs unavailable for 
those applications where the high spatial resolution is 
required. To obtain HR HSIs, many researchers have 
proposed several methods including hyperspectral 
superresolution, fusion-based methods, and SSR. SSR means 
acquiring HR HSIs through spectral enhancement of HR 
MSIs. The existing SSR algorithms can be divided into two 
groups, model-driven methods and data-driven methods.  

For the model-driven algorithms, Arad and Ben-Shahar [4] 
proposed to computed the dictionary representation of each 
RGB pixel by the Orthogonal Match Pursuit (OMP) 
algorithm. By introducing a novel shallow method based on 
A+ of Timofte et al. [5] from super-resolution, Wu et al. [6] 
substantially improves over Arad’s method. These algorithms 

can enhance the spectral resolution of MSIs but with spectral 
distortion in some object.  

Besides, with the help of data-driven methods, i.e. deep 
learning, Galliani et al. [7] proposed a DenseUnet with 56 
convolutional layers which get a good SSR performance. And 
also Can et al. [8] proposed a moderately deep CNN model 
with residual blocks to reach better SSR effect. Those 
methods can certainly enhance the spectral resolution but 
show a not good spatial fidelity.  

To improve the spectral resolution as well as maintain 
good spatial details, combining the model-driven and data-
driven algorithms, this paper presents an optimization-
inspired CNN by unfolding a variational model, which shows 
good performance in spectral enhancement. Unlike the 
methods alternately running CNN and total variational model, 
the proposed OCNN is with a total end-to-end manner, which 
can be trained as data-driven models. 

To make better use of the image data, classification has 
attracted many researchers. And to increase the information 
to help classification, many researchers select HSIs as input 
data at the cost of spatial resolution. With the help of SSR, 
we can enhance the spectral channels of MSIs. So this paper 
also discussed whether the SSR algorithms can help 
classification very well. 

The remaining paper is organized as follows. Section 2 
shows two model-driven methods, two data-driven SSR 
methods, and the proposed OCNN. Experimental results are 
shown in section 3, and both SSR quantitative evaluation and 
classification results are displayed. Conclusions are given in 
the last section.  
 

2. SPECTRAL SUPERRESOLUTION METHODS 
 
2.1. Model Formulation 
 

To present the relationship between HSIs and MSIs clearly, 
a spectral degradation model is proposed. Let 𝑿ᵣ ∈

𝑅ᵘ×ᵉ×ᵄ  means the observed hyperspectral image, where 𝐶  
is the number of the spectral channels and 𝑊, 𝐻 is the width 
and height, respectively. and 𝑿ᵨ ∈ 𝑅ᵘ×ᵉ×ᵞ  presents the 
observed multispectral image, where 𝑐 < 𝐶 is the number of 
the multispectral bands. And the spectral degradation can be 
modeled with a transform matrix 𝜱 ∈ 𝑅ᵞ×ᵄ  as follow 
 𝑿ᵨ = 𝜱𝑿ᵣ (1) 
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2.2. Arad 
 

Employing sparse dictionary learning, Arad et al. proposed 
a sparse recovery method. In this method, the multispectral 
and hyperspectral images are regarded as a dictionary 𝑫ἆ or 
𝑫ᵣ multiplied with a weight matrix 𝒘 as  
 𝑿ᵨ = 𝑫ἆ𝒘 (2) 
 𝑿ᵣ = 𝑫ᵣ𝒘 (3) 
And Arad proposed that the multispectral dictionary 𝑫ᵨ can 
be transformed from the hyperspectral dictionary 𝑫ᵣ with a 
matrix 𝑹 as  
 𝑫ἆ = 𝑹𝑫ᵣ (4) 

So Arad firstly learns a rich hyperspectral dictionary 𝑫ᵣ 
from a large number of samples, and use the transformation 
matrix 𝑹  to generate 𝑫ἆ  by (4). Then employing 
Orthogonal Match Pursuit (OMP) algorithm in the MSIs, the 
weight matrix 𝒘 can be computed and used to reconstruct 
HSIs by (3). 
 
2.3. A+ 
 

For the A+ proposed by Wu et al., they use a pretrained 
overcomplete dictionary, not as proposed by Arad for a 
superposition but as anchor points to perform a nearest 
neighbor search. A projection matrix is computed for each 
anchor, using a collection of neighboring samples from the 
complete training set to approximate a local mapping from 
RGB to hyperspectral values as shown in Fig. 1. 

 
Fig. 1  the processing of the A+  

2.4. DenseUnet 
 

Galliani et al. proposed a very deep Unet with Densenet 
block, which is called DenseUnet in this paper. The network 
is with a total of 56 layers and each convolution has size 3×
3. The image gets down-scaled 5 times by a factor of 2 with 
a 1×1 convolution followed by max-pooling. In its own 
terminology, each Densenet block has a growth rate of 4 with 
16 layers, which means 4 convolutional layers per block, each 
with 16 filters, seeing Fig. 2. 

 
Fig. 2  the architecture of the DenseUnet  

 
2.5. CanNet 
 

Rather than a very deep convolutional neural network 
(CNN) proposed by Galliani et al., Can et al. proposed a 
shallow CNN with residual blocks to achieve the spectral 
enhancement, which is shown in Fig. 3. And we call this CNN 
as CanNet. It’s noted that all the activation functions are 
PReLU. 

 
Fig. 3  the architecture of the CanNet  

2.6. Proposed OCNN 
 
2.6.1. Networks 

With the spectral degradation model, we can easily give 
the formulation of the SSR problem with some prior 
knowledge as regularization term as 
 �ﬞ�ᵣ = 𝑎𝑟𝑔𝑚𝑖𝑛

ựᴭ

‖𝑿ᵨ − 𝜱𝑿ᵣ‖
ṛ + 𝛾ℛ(𝑿ᵣ) (5) 

where 𝛾  is a trade-off parameter, and ℛ(∙)  is the 
regularization term. To better solve this minimization 
problem, the variable splitting technique can be employed to 
separate the two terms. In this paper, Equation (5) can be 
solved by solving two subproblems iteratively as 
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Fig. 4  the processing of the OCNN 

 
 �ﬞ�ᵣ

ᵦ+Е = 𝑎𝑟𝑔𝑚𝑖𝑛
ựᴭ

‖𝑿ᵨ − 𝜱𝑿ᵣ‖
ṛ + 𝜇‖𝑮ᵦ −𝑿ᵣ‖

ṛ (6) 

 𝑮̂β +Е = 𝑎𝑟𝑔𝑚𝑖𝑛
ựɉ

𝑮−𝑿ᵣ
ᵦ+Е ṛ + 𝜆ℛ(𝑮) (7) 

where 𝜆 =  is another penalty parameter related to 𝜇 and 𝛾. 

Inspired by [9], we employ a residual network to learn the 
prior  𝑮ᵦ  implicitly. And we also employed two different 
convolutional blocks to update �ﬞ�ᵣ

ᵦ for the end-to end manner 
as shown in Fig. 4. 
 
2.6.2. Multi-level Learning 

As we know, CNN is famous for its data-driven training, 
which is always affected by the loss function. To make sure 
the optimization stages in the OCNN operate normally, multi-
level constraints to stages are employed. and the loss 
functions in each level are all Mean Absolute Error (MAE) 
loss function, i.e. L1 loss. 

𝐿𝑜𝑠𝑠 = 𝛼ᵥ �ﬞ�ᵣ
ᵦ − 𝑿ᵣ

ᵌ

ᵥ=Е

 (8) 

where 𝛼ᵥ  is the trade-off parameter in the 𝑗 th stage. �ﬞ�ᵣ
ᵦ 

means the intermediate result reconstructed by the 𝑗th stage. 
Introducing multi-level loss functions, the proposed 

OCNN can learn more accurate mapping functions at 
different optimization stages and achieve better spectral 
enhancement.   
 

3. EXPERIMENTS AND DISCUSSION 
 

We evaluated five SSR methods using CAVE dataset and 
remote sensing (RS) datasets. And four image quality metrics 
are utilized, including correlation coefficient (CC), peak 
signal-to-noise ratio (PSNR), structural similarity (SSIM), 
and spectral angle mapper (SAM). 

The CAVE dataset is a popular hyperspectral image dataset 
in hyperspectral image processing, which consists of 32 
scenes with spatial size of 512×512. All the HSIs in CAVE 
cover spectral range from 400nm to 700nm with 10m spectral 
resolution, which contain 31 bands. Besides, the RGB images 
covering the same scene as HSI data are available. 3 images 
from the CAVE dataset are selected as testing images and 
others are used to train models.  

As for the RS datasets, a Chinese hyperspectral dataset 
from Orbita hyperspectral satellites (OHS) with 10m spatial 
resolution and 32 channels cover spectral range from 400nm 
to 1000nm are selected as HSIs. Because of the same spatial 
resolution between OHS data and Sentinel-2 data, we 
simulated Sentienl-2 MSIs from OHS HSIs using spectral 
downsampling with the spectral response functions. In this 
manner, the errors caused by geographic registration and 
the inconsistency of imaging time between Sentinel-2 and 
OHS data can be avoided, which helps us to build the RS 
SSR dataset. We also selected 3 images as testing data and 
750 images as training samples.

TABLE I 
NUMERICAL COMPARISON OF FOUR IMAGE QUALITY METRICS BETWEEN RESULTS IN CAVE DATASET AND RS 

DATASET 

Method 
CAVE dataset RS dataset 

CC PSNR SSIM SAM CC PSNR SSIM SAM 

Arad 0.9444 26.3057 0.8303 20.3662 0.8319 23.6114 0.5979 12.2771 
A+ 0.9860 35.2462 0.9387 22.5772 0.9023 25.8905 0.7434 10.7717 

DenseUnet 0.9914 35.0648 0.9695 8.5961 0.9431 26.0308 0.8914 9.8650 
CanNet 0.9915 34.7093 0.9642 9.9054 0.9586 26.6592 0.8895 9.8871 
OCNN 0.9941 37.3844 0.9818 8.3442 0.9623 28.5653 0.9210 9.6879 

The SSR performance of five methods are shown in 
TABLE I. The proposed OCNN get the best SSR 
performance in both CAVE dataset and RS dataset. And 
CanNet get good performance in spatial fidelity but with a 
worse spectral maintaining than DenseUnet. A+ shows a 

surprising improvement in PSNR but with high spectral 
distortion.  

Then, we verified the classification results by support 
vector machine (SVM) only in RS dataset. Due to lack of 
ground truth of classification in the proposed RS dataset, we 
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simulated a HS-MS image couple from the Indian Pines 
dataset with the same spectral range as RS dataset. The 
quantitative results are shown in Table Ⅱ. 

TABLE II 
THE OVERALL ACCURACY AND KAPPA 

COEFFICIENT OF CLASSIFICATIONS 

Method Kappa OA(%) 

Original MSI 0.5760 64.0103 
Arad 0.5343 60.6296 
A+ 0.6074 66.5320 

DenseUnet 0.5960 65.4602 
CanNet 0.6006 65.6350 
OCNN 0.6113 67.2160 

 
Comparing with original MSI, except Arad, the images 

enhanced by the SSR methods get better classification results, 
which shows that the SSR methods can provide more spectral 
information for original multispectral images to help 
classification. 

  

  
(a) (b) 

   
(c) (d) 

  
(e) (f) 

Fig. 5  the classification results of different input. (a) original MSI with 4 
bands. (b) the SSR result of Arad. (c) the SSR result of Arad. (d) the SSR 
result of DenseUnet. (e) the SSR result of CanNet. (f) the SSR result of 
OCNN.  

The classification results are shown in Fig. 5. The SSR 
algorithms can improve more information to help SVM better 
group the same object as shown in the area zoomed in. And 
the classification results using the SRR data by the proposed 
OCNN shows better integrality. 

4. CONCLUTION 
 

To enhance spectral resolution of MSI, this paper proposed 
an OCNN from a physical model with deep learning manner, 
and compared with four famous SSR algorithms based on 
dictionary learning and deep learning. Verified in natural 
image dataset and RS image dataset, the proposed OCNN get 
the best SSR effect. Besides, a series of classification 
experiments are also presented to show the SSR algorithms 
can truly help classifier better distinguish different objects. 
And compared with four mentioned SSR methods, the 
proposed OCNN improves the accuracy of classification the 
most, which proves the effectiveness and superiority of the 
proposed method. 
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