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H I G H L I G H T S

• A unified spatial-X fusion framework is proposed.

• Multiple-degradation model-driven deep unfolding for high-performing CNN.

• Spatial-X intrinsic interaction prior is proposed to capture multimodal dependencies.

• Comprehensive validation on four major fusion tasks shows the superiority of SpaXFus.

• The systematic analysis of spatial-X fusion’s benefits for downstream applications.
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A B S T R A C T

Multi-source remote sensing data can highlight different types of information based on user needs, resulting in 

large volumes of data and significant challenges. Hardware and environmental constraints create mutual depen­

dencies between information types, particularly between spatial data and other types, limiting the development 

of high-precision applications. Traditional methods are task-specific, leading to many algorithms without a uni­

fied solution, which greatly increases the computational and deployment costs of image fusion. In this paper, we 

summarize four remote sensing fusion tasks, including pan-sharpening, hyperspectral-multispectral fusion, spatio-

temporal fusion, and polarimetric SAR fusion. By defining the spectral, temporal, and polarimetric information, as 

X, we propose the concept of generalized spatial-channel fusion, referred to as Spatial-X fusion. Then, we design 

an end-to-end network SpaXFus, a generalized spatial-channel fusion framework through a model-driven unfold­

ing approach that exploits spatial-X intrinsic interactions to capture internal dependencies and self-interactions. 

Comprehensive experimental results demonstrate the superiority of SpaXFus, e.g., SpaXFus can achieve four re­

mote sensing image fusion tasks with superior performance (across all fusion tasks, spectral distortion decreases 

by 25.48 %, while spatial details improve by 7.5 %) and shows huge improvements across multiple types of down­

stream applications, including vegetation index generation, fine-grained image classification, change detection, 

and SAR vegetation extraction.

1 . Introduction

Remote sensing has emerged as a vital tool for understanding the 

Earth’s surface, providing invaluable data for diverse applications such 

as environmental monitoring (Fu et al., 2022), urban planning (Benedek 

et al., 2011), disaster management (Zhu et al., 2010), and resource 

exploration (Hong et al., 2024). With the increasing availability of time 

series data from various sensors, such as multispectral (MS), hyperspec­

tral (HS), and polarimetric synthetic aperture radar (SAR) imagery, the 

need to integrate multiple types of information has become a pressing 

challenge in remote sensing. Due to the limitations imposed by sensor 
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hardware and the imaging conditions, various constraints exist among 

different data sources. For example, MS imagery strikes a balance be­

tween spectral and spatial resolution, HS imagery provides finer spectral 

information but often at the cost of spatial resolution, temporal data 

with high temporal resolution is typically accompanied by spatial degra­

dation, and polarimetric SAR (PolSAR) data, while offering valuable 

polarimetric insights, is constrained by both polarization and spatial 

resolution. Consequently, no single modality can fully capture the com­

plexity of the observed scene. In practical applications, the data acquired 

are often of low quality due to these inherent limitations. Consequently, 

there is a pressing need for the development of effective image fusion 

techniques that can integrate multi-source information, address these 

constraints and ultimately improve data quality.

Image fusion plays a critical role in maximizing the utility of remote 

sensing data by combining complementary information from differ­

ent sensors. Over the years, numerous fusion techniques have been 

developed to address specific fusion tasks, such as pan-sharpening, 

hyperspectral-multispectral fusion (HMFusion), spatio-temporal fusion 

(STFusion), and PolSAR fusion. For instance, pan-sharpening aims to en­

hance the spatial resolution of MS images by integrating them with high-

resolution panchromatic imagery, while hyperspectral-multispectral im­

age fusion seeks to combine the rich spectral content of HS data with 

the high spatial resolution of MS data. Likewise, spatio-temporal fusion 

enables the acquisition of high-spatial-resolution (HR) time series by 

integrating data captured at different times, and PolSAR fusion refines 

the radiative characteristics of land cover by combining spatial informa­

tion with polarimetric characteristics. Despite the specific goals of these 

tasks, they share a common theme: fusing spatial information with addi­

tional spectral, temporal, or polarimetric information to generate a more 

informative and accurate representation of the scene.

Although a wide range of fusion techniques have been developed 

for these tasks, most existing methods are task-specific and lack gener­

alizability across different fusion scenarios. Traditional pan-sharpening 

approaches, such as component substitution (CS) (Chen et al., 2024;

Garzelli et al., 2007), multiresolution analysis (MRA) (Liu, 2000), and 

variational optimization models (VO) (Ballester et al., 2006), are widely 

used to improve the spatial resolution of MS images. However, these 

methods struggle to achieve a good balance between spatial blurring 

and spectral distortions, and are gradually being surpassed by deep 

learning-based algorithms. By addressing the different stages of the pan-

sharpening process, deep learning has significantly enhanced algorithm 

performance through various approaches, including convolutional neu­

ral networks (CNNs) (Masi et al., 2016), residual learning (Wei et al., 

2017), multi-scale convolutions (Wang et al., 2021), generative adver­

sarial networks (GANs) (Ma et al., 2020), conditional GANs (Zhou et al., 

2022), attention-based CNNs (Zheng et al., 2020), transformers (Zhang 

et al., 2024a), model-driven CNNs (He et al., 2022), and diffusion models 

(Meng et al., 2023).

Similarly, hyperspectral-multispectral image fusion methods are usu­

ally inspired by pan-sharpening techniques, such as CS-based (Yokoya 

et al., 2011; Choi et al., 2010), MRA-based (Nunez et al., 1999), and 

deep learning-based methods (Yang et al., 2018). Considering the dif­

ferent spectral information in MS and HS images, researchers have also 

developed Bayesian and statistical models (Sui et al., 2019), sparse rep­

resentation (Lanaras et al., 2015), and low-rank regularization (Dian 

et al., 2024), but these often require extensive computational resources 

and large training datasets, limiting their applicability to other fusion 

tasks, such as spatio-temporal or PolSAR fusion.

Spatio-temporal fusion algorithms can be categorized into weight 

function-based methods (Hilker et al., 2009), unmixing-based methods 

(Zhukov et al., 1999), learning-based methods (Huang and Song, 2012), 

Bayesian-based methods (Li et al., 2013), and hybrid methods (Gevaert 

and GarcÃ-a-Haro, 2015). Weight function-based methods assign im­

portance to different input images based on their spatial and temporal 

characteristics, thereby optimizing the fusion process (Zhu et al., 2010). 

Unmixing-based methods analyze the spectral mixtures to extract under­

lying components, facilitating the reconstruction of HR images (Xu et al., 

2015). In contrast, learning-based methods leverage machine learning 

techniques to capture complex mappings between images (Song and 

Huang, 2013). Bayesian-based methods utilize probabilistic frameworks 

to address uncertainty, effectively integrating multiple types of infor­

mation (Shen et al., 2016). Finally, hybrid methods combine various 

strategies, drawing on the strengths of different approaches to improve 

fusion performance (Zhu et al., 2016).

Recognizing the importance of HR polarimetric information, Pastina 

et al. (2001) introduced polarimetric information into PolSAR image 

super-resolution using SPECAN techniques, which is the earliest attempt 

to improve the spatial resolution of SAR data. Then, polarimetric com­

ponent decomposition-based methods are utilized to further improve 

the injection of polarimetric information, such as 2D-PBWE (Suwa and 

Iwamoto, 2006), projection onto convex sets algorithm (Jiong and Jian, 

2007), coherent target decomposition (Zou et al., 2008), and polarimet­

ric spatial correlation (SRPSC) (Zhang et al., 2011). Although they can 

extend traditional bandwidth extrapolation from SAR to PolSAR images, 

they inadequately utilize polarimetric data and sometimes suffer from 

grid effects. With the rapid development of deep learning, Lin et al.  de­

veloped a series of CNN-based PolSAR fusion algorithms, including deep 

CNNs and residual learning (Shen et al., 2020).

In remote sensing, data often contain spatial information in terms 

of spatial resolution, but depending on the specific applications, other 

types of information are also included in the form of additional chan­

nels, such as spectral, temporal, and polarimetric data. The challenge 

of fusing disparate types of information is significantly compounded 

when dealing with high-dimensional datasets. While these data sources 

provide substantial information, their inherent complexity complicates 

the preservation and integration of all relevant features during the fu­

sion process. Additionally, existing fusion techniques often need to take 

into account the characteristics involved in different tasks and develop 

solutions accordingly. For instance, in the context of spatial-spectral 

fusion techniques, such as pan-sharpening and HMFusion, the interde­

pendence between spatial and spectral information further complicates 

the pursuit of balance. In contrast, in spatio-temporal fusion, irregu­

lar acquisition intervals or rapidly changing environments hinder the 

effective integration of spatial and temporal information. Traditional 

methods that rely on temporal regularization or statistical models often 

fall short in capturing the complete dynamics of the scene. Similarly, 

PolSAR data, characterized by multiple polarimetric channels, present 

unique challenges for fusion, necessitating careful control of the inter­

action between spatial and polarimetric information to retain essential 

details. However, task-specific image fusion approaches require distinct 

parameter tuning, leading to increased computational and deploy­

ment costs. Moreover, they overlook the shared characteristics across 

multiple tasks, thereby limiting the generalization capability of the

algorithm.

Given these challenges, there is a pressing need for a more versatile 

and generalized spatial-channel fusion framework capable of accommo­

dating a range of fusion tasks within a unified approach. It aims to 

integrate spatial information with various types of information in the 

form of channels, collectively denoted as X, which may encompass mul­

tispectral, hyperspectral, temporal, or polarimetric information. Thus, 

generalized spatial-channel fusion can be represented as Spatial-X fu­

sion, which encapsulates the core concept of the proposed framework: 

spatial information serves as the main component, while X represents 

the diverse modalities that are fused with the spatial information.

In this paper, we propose a generalized spatial-channel fusion frame­

work, i.e.  Spatial-X Fusion, which originates from the model-driven 

solutions to multiple fusion tasks with spatial-X intrinsic interaction 

prior (SpaXFus). The SpaXFus enables a more precise representation 

of the interactions between spatial and X information, resulting in supe­

rior fusion performance. Additionally, the spatial-X intrinsic interaction 
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Fig. 1. Overview of SpaXFus: The proposed SpaXFus framework addresses four types of remote sensing image fusion tasks, with its core built upon a model-driven 

deep learning stage. Specifically, a 𝐾-stage optimization-based solution is unfolded into CNNs. At the heart of SpaXFus is the Spatial-X Intrinsic Interaction Prior 

(SpaXIP), which comprises 𝑛 Spatial-X Interaction Modules (SXMs) and an X-Intrinsic Interaction Module (XIM). These modules utilize the Spatial-X State-Space 

Model (SXSSM) and the X-Intrinsic State-Space Model (XISSM) to effectively capture long- and short-range relationships in spatial and X domains.

prior facilitates the integration of information across multiple channels 

by incorporating two key components: the Spatial-X Interaction Module 

and the X Intrinsic Interaction Module. The former enables cross-modal 

learning by integrating spatial data with other modalities, while the 

latter effectively captures internal relationships within X information. 

Together, these components enhance fusion performance, leading to 

more robust and informative representations. The proposed framework 

enables the integration of spatial information with spectral, temporal, or 

polarimetric data, improving the quality of the fused imagery, as shown 

in Fig. 1.

The key contributions of this research are summarized as follows:

• We introduce a novel, generalized spatial-channel fusion framework, 

Spatial-X fusion, where X involves multispectral, hyperspectral, tem­

poral, and polarimetric information, making it applicable to a wide 

range of remote sensing applications, including precision agriculture, 

change detection, and vegetation monitoring.

• The proposed SpaXFus establishes a data-driven unified paradigm for 

remote sensing image fusion, which addresses the fragmentation of 

existing image fusion tasks and enhances the model generalization.

• To capture the global dependencies and local interactions among 

spatial and X domain, the spatial-X intrinsic interaction prior is 

proposed to effectively explore the internal relationships within 

spatial-X information and facilitate the adaptive fusion of features 

with diverse characteristics.

• We demonstrate the versatility of SpaXFus through four spatial-

channel fusion tasks, including pan-sharpening, hyperspectral-

multispectral fusion, spatio-temporal fusion, and PolSAR fusion, 

showing its superiority across various datasets.

• For the first time, this work comprehensively explores the impact of 

image fusion on downstream applications, including vegetation in­

dex production generation, fine-grained image classification, change 

detection, and SAR vegetation extraction.

The rest of this paper is organized as follows. Section 2 provides 

a review of related works on four types of fusion tasks. Section 3 

describes the mathematical formulation of spatial-X fusion. Section 4 

introduces the proposed SpaXFus framework. Section 5 presents the 

experimental results, including comparisons with existing fusion algo­

rithms across four fusion tasks and evaluations of improvements in 

downstream applications. Finally, Section 6 concludes the paper by sum­

marizing the key findings and discussing potential directions for future

research.

2 . Related works

2.1 . Pan-sharpening

Over the past few decades, many methods have been proposed 

to achieve pan-sharpening. The main algorithms for traditional pan-

sharpening can be divided into four categories:

(1) Component substitution-based methods. Methods based on compo­

nent substitution aim at replacing the low-resolution spatial component 

of MS images with PAN images. Moreover, the spatial components are 

always extracted by methods based on intensity-hue-saturation (IHS) 

(Loncan et al., 2015), Brovey transformation (Gillespie et al., 1987), 

principal component analysis (PCA) (Kwarteng and Chavez, 1989), 

and Gram-Schmidt transformation (GS) (Aiazzi et al., 2007). (2) Multi-

resolution analysis-based methods. In this type of method, MS and PAN 

images are decomposed into various resolutions, and the spatial details 

in PAN images are injected into the same-level MS features. Laplacian 

pyramids (Burt and Adelson, 1987), curvelet (Aiazzi et al., 2006), 

wavelets (Ranchin and Wald, 2000), and contourlet transformations (Do 

and Vetterli, 2005) are some classical decompositions in this group. 

(3) Hybrid methods. These methods try to combine the strengths of 

both component substitution and multi-resolution analysis methods. 

The main idea is to improve the spatial details of the fused image at 

multiple scales. Substitute Wavelet Intensity (SWI) (González-Audícana 

et al., 2004), Additive Wavelet Luminance Proportional (AWLP) (Otazu 

et al., 2005), and GS-Wavelet (Javan et al., 2021) are all hybrid meth­

ods. (4) Optimization-based methods. Considering the spatial and spectral 

degradation in remote sensing imaging, the variational optimization-

based methods regard pan-sharpening as an inverse problem and build 

different cost functions to search for the best estimation of the ideal 
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high-resolution MS images. The optimization-based methods that fuse 

PAN and MS images by different constraints include P+XS (Ballester 

et al., 2006), Total Variation (TV) (Palsson et al., 2013), 𝑙1∕2 gradient 

prior (Zeng et al., 2016), filter estimation (Xiao et al., 2023), and local 

gradient constraints (Fu et al., 2019).

However, these methods struggle to achieve a good balance between 

spatial blurring and spectral distortions, and are gradually surpassed by 

deep learning-based algorithms (He et al., 2023; Zhong et al., 2016). 

Masi et al. (2016) regarded the pan-sharpening task as a particular form 

of image super-resolution and utilized a three-layer convolutional neu­

ral network (PNN) to address pan-sharpening. As the deeper networks 

achieve a more robust learning ability, residual learning is employed 

to improve the depth of CNNs and achieve better performance (Shao 

and Cai, 2018). Wei et al. (2017) introduced a global residual skip to 

enhance the spatial details. Yang et al. (2017) employed high-pass fil­

ters before ResNet to extract better textures. To further improve the 

modeling capability of CNNs, there have been many works, including 

pyramid networks (Zhang et al., 2019), adaptive weights (Liu et al., 

2020a), attention-based CNNs (Guan and Lam, 2022), the gradient prior 

(Zhang and Ma, 2021), two-stream networks (Liu et al., 2020c), the deep 

unrolling (Cao et al., 2022), generative adversarial networks (GANs) 

(Liu et al., 2020b), and diffusion models (Zhong et al., 2024). Other 

approaches have focused on improving loss functions and integrating 

more binding constraints, such as spatial and spectral consistency loss 

(Luo et al., 2020) and self-attention mechanisms with sparse constraints 

(Qu et al., 2020). Moreover, some methods have integrated prior knowl­

edge (Ni et al., 2022) and meta-learning (Wang et al., 2022) to enhance 

performance.

2.2 . Hyperspectral-multispectral fusion

Early hyperspectral-multispectral image fusion methods were largely 

inspired by pan-sharpening techniques and can be classified into three 

main categories: CS-based approaches (Aiazzi et al., 2002), MRA-based 

methods (Yokoya et al., 2011), and deep learning-based approaches (Xu 

et al., 2020a). These methods primarily framed the fusion task as a band 

assignment problem, which involves determining which high-spatial-

resolution MS band should be used to enhance the spatial resolution of 

a given HS band. In early works on this topic (Zhang and He, 2007), this 

issue was addressed by manually defining association rules tailored to 

the specific sensors used in image acquisition. However, no algorithmic 

solutions were proposed to generalize this process. More recently, the 

band assignment problem has been explored in depth, leading to more 

systematic approaches (Picone et al., 2017; Simoes et al., 2014).

Another category of HS-MS fusion methods is based on low-rank 

approximation, where spectral signatures are assumed to lie in a low-

dimensional subspace. This subspace is represented by a matrix or tensor 

with a rank much lower than the original data dimensions. Algorithms 

such as vertex component analysis (Wei et al., 2016) and truncated 

Singular Value Decomposition (SVD) (Wei et al., 2015) are commonly 

used to learn the spectral basis from HS data. Low-rank tensor models, 

which exploit local low-rank structures in hyperspectral images, have 

been further developed through Tucker tensor decomposition (Li et al., 

2018a; Lanaras et al., 2015) and Canonical Polyadic tensor decomposi­

tion (Xu et al., 2020b). For example, Zhou et al. (2017) applied local 

low-rank assumptions to perform hyperspectral super-resolution.

Additionally, some HS-MS fusion methods are based on sparse rep­

resentation. These methods assume that the spectral basis forms an 

over-complete dictionary, where spectral signatures are represented as 

linear combinations of a few dictionary atoms, ensuring sparsity (Dong 

et al., 2016). Techniques such as K-SVD dictionary learning (Li et al., 

2018b) are used to construct this dictionary from HS images. The coef­

ficient estimation is regularized using sparse priors, with sparse coding 

techniques employed to optimize the solution. Studies such as Dian and 

Li (2019) and Li et al. (2018b) used coupled sparse matrix factorization 

to achieve high-resolution hyperspectral imaging, while Akhtar et al. 

(2015) employed Bayesian sparse coding for improved performance. 

Sparse tensor methods, including non-local sparse tensor approaches 

(Dian et al., 2024), have also been developed to extend these concepts 

into the tensor domain.

Recently, deep learning-based techniques have also had a profound 

impact on HMFusion (Deng et al., 2023). Deep learning-based fusion 

methods typically aim to learn nonlinear mapping functions between 

high-resolution target HS images and observed HS and MS image pairs 

(Xie et al., 2022). Approaches such as CNNs extract spatial and spec­

tral features, facilitating more accurate fusion (Hu et al., 2022). For 

example, Yang et al. (2018) used a two-branch CNN to capture spa­

tial neighborhood features and spectral information, while Xu et al.  (Xu 

et al., 2020a) enhanced performance using mechanisms like skip con­

nections. Other advanced models include SSR-NET (Zhang et al., 2020) 

for spatial-spectral reconstruction and deep blind fusion techniques (Jia 

et al., 2023), which adjust for unknown sensor characteristics, thereby 

improving image quality across various datasets.

2.3 . Spatio-temporal fusion

Spatio-temporal fusion is a critical approach for obtaining high 

spatio-temporal resolution Earth observation data. Currently, a vari­

ety of spatio-temporal fusion methods have been developed, which can 

be categorized into four main types: spatial weighting, spatial unmix­

ing, hybrid, and learning-based approaches (Wang et al., 2023). Spatial 

weighting methods, such as STARFM (Gao et al., 2006) and its enhanced 

variant, ESTARFM (Zhu et al., 2010), utilize spectral, temporal, and spa­

tial data from nearby pixels, with adjustments in methods like Fit-FC 

(Wang and Atkinson, 2018) and Agri-Fuse to account for seasonal and 

phenological variations (Gu et al., 2023). Spatial unmixing-based meth­

ods, such as the multiresolution technique and the STDFA (Wu et al., 

2012), rely on accurate proportion estimation while assuming minimal 

land cover changes.

Hybrid methods leverage the strengths of both spatial weighting 

and spatial unmixing techniques. For example, Zhu et al. (2016) pro­

posed FSDAF by integrating the core principles of spatial unmixing and 

STARFM into a unified framework. Furthermore, Li et al. (2020b) incor­

porated sub-pixel land cover change information into FSDAF, developing 

SFSDAF to better address changes in highly heterogeneous regions. 

Subsequently, FSDAF 2.0 introduced change detection algorithms to en­

hance its capacity to manage pixels experiencing land cover transitions 

(Guo et al., 2020).

Learning-based methods establish nonlinear mappings between im­

ages of differing resolutions (Huang and Song, 2012). For example, the 

spatio-temporal temperature fusion network (STTFN) offers significant 

potential to explicitly model the relationships between multi-source data 

through nonlinear approaches (Yin et al., 2021). Song et al. (2018) 

employed deep convolutional neural networks (CNNs) to model the re­

lationship between Landsat and MODIS images, while Liu et al. (2019) 

developed a two-stream CNN (StfNet) to capture temporal dependen­

cies within image sequences. To address geometric registration issues, 

Qin et al. (2022) used multiscale features, and Zhang et al. (2024b) in­

troduced an efficient cross-paired wavelet-based network (ECPW-STFN) 

requiring fewer inputs. Additionally, GAN-based approaches were intro­

duced to resolve reference image selection issues (Chen et al., 2020), and 

Transformer models, with their capacity for long-range feature extrac­

tion, have also been applied to spatio-temporal fusion tasks (Chen et al., 

2022).

2.4 . PolSAR fusion

PolSAR image fusion seeks to enhance the spatial resolution of 

PolSAR images by integrating them with HR single-polarimetric SAR 

(SinSAR) images (or dual-polarimetric SAR). Early methods for enhanc­

ing SAR resolution mainly relied on frequency-domain techniques to 
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Fig. 2. The problem formulations of four fusion tasks.

improve spatial clarity in PolSAR images. For example, Pastina et al. 

(2001) first introduced polarimetric information into PolSAR super-

resolution through single-channel spectral analysis, while Suwa and 

Iwamoto (2006) proposed a two-dimensional bandwidth extrapola­

tion technique, extending traditional SAR bandwidth extrapolation to 

PolSAR images. Although these methods succeeded in enhancing spa­

tial resolution, they did not account for relationships between different 

polarizations.

Later approaches began utilizing prior image information to fur­

ther enhance resolution. Jiong and Jian (2007) employed the POCS 

algorithm to extract information from low-resolution polarimetric SAR 

channels, generating higher-resolution images through fusion, though 

this approach compromised original polarimetric and phase information 

(Zhang et al., 2011). Similarly, Zou et al. (2008) introduced a super-

resolution method using target decomposition and quadrant-based pixel 

weighting to enhance central pixels, though this often introduced grid 

artifacts. To address this issue, a super-resolution method based on po­

larimetric spatial correlation was developed, which used pixel-to-pixel 

polarimetric correlations to initialize subpixel values and iteratively 

refine them to create a high-resolution PolSAR image (Zhang et al., 

2011). However, variations across polarimetric decompositions reduced 

accuracy in some cases.

Recently, deep learning has shown potential in PolSAR super-

resolution, though its application remains limited. The first deep 

learning-based multichannel PolSAR super-resolution method (MSSR) 

allowed simultaneous processing of PolSAR channels but did not fully 

preserve key polarimetric and numerical characteristics (Lin et al., 2019, 

2023). To address these limitations, Shen et al. (2020) proposed an ap­

proach using complex blocks, transposed convolution, and PReLU to 

retain these properties. Additionally, Lin et al. (2021a) introduced a 

fusion network (PSFN) that combines low-resolution PolSAR and high-

resolution SinSAR data, later evolving into FDFNet, which incorporates 

SAR super-resolution and polarimetric decomposition attention to better 

preserve polarimetric information (Lin et al., 2021b).

3 . Spatial-X fusion

Although deep learning algorithms have achieved remarkable 

progress in multi-source satellite image fusion, their black-box nature 

and limited generalization significantly constrain the reliability of re­

sults in downstream tasks. To address this, this section begins with 

formulations for four fusion tasks and presents a unified framework for 

the Spatial-X fusion.

3.1 . Formulations of four remote sensing fusion tasks

3.1.1 . Pan-sharpening

In pansharpening, the objective is to fuse a high-resolution panchro­

matic image 𝐏 ∈ R𝑤×ℎ×1 with a low-resolution multispectral image 

𝐌 ∈ R𝑤′ × ℎ′ × 𝑐  to recover a high-resolution multispectral image 𝐗 ∈
R𝑤 × ℎ × 𝑐  with spatial dimensions 𝑤 and ℎ, and 𝐶 spectral bands, 

where 𝑤′ < 𝑤 and ℎ′ < ℎ. Fig. 2(a) illustrates the degradation and 

reconstruction of pansharpening task.

The multispectral image 𝐌 is generated by applying a spatial degra­

dation operator 𝐷𝑚, which can be modeled as: 

𝐌 = 𝐷𝑚 ∗ 𝐗 (1)

where 𝐷𝑚 ∈ R𝑤′ℎ′ × 𝑤ℎ represents spatial downsampling in multispec­

tral images, reducing the spatial resolution of 𝐗, typically involving 

downsampling or Gaussian blurring. ∗ is the convolution operator. The 

degradation ratio 𝑟 is definited as 𝑟 = 𝑤∕ℎ = 𝑤′∕ℎ′, and usually 𝑟 = 4. 

Similarly, the panchromatic image 𝐏 is obtained by applying a spec­

tral transformation Φ𝑃 , which combines the bands of 𝐗 into a single 
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panchromatic band, without spatial degradation: 

𝐏 = 𝐗Φ𝑃 (2)

where Φ𝑃 ∈ R𝑐×1 represents the spectral response of the panchromatic 

sensor, which captures the spectral characteristics of the multispectral 

image as a weighted average of its original spectral bands.

Pansharpening is to estimate 𝐗 from 𝐏 and 𝐌, yielding an approxi­

mation 𝐗̂ that best preserves the spatial characteristics from 𝐏 and the 

spectral characteristics from 𝐌. Mathematically, the pansharpened im­

age 𝐗̂ should satisfy an energy minimization criterion, balancing spatial 

and spectral fidelity: 

𝐗̂ = argmin
𝐗

‖𝐌 −𝐷𝑚 ∗ 𝐗‖2𝐹 + ‖𝐏 − Φ𝑃𝐗‖2𝐹 + 𝜆R(𝐗) (3)

where ‖ ⋅ ‖𝐹  is the Frobenius norm and is usually the 𝓁2 norm. ‖𝐏 −
Φ𝑃𝐗‖2 represents the spectral fidelity to the panchromatic image, en­

suring 𝐗̂ captures the high spatial detail of 𝐏, while ‖𝐌 − 𝐷𝑚 ∗ 𝐗‖2
maintains spectral consistency with 𝐌, ensuring the spectral character­

istics are faithfully preserved. R(𝐗) denotes the regularizer that imposes 

prior knowledge, ‖⋅‖2 refers to the Euclidean norm of data-fidelity terms, 

and 𝜆 is a trade-off parameter between the regularizer and data-fidelity 

terms.

3.1.2 . Hyperspectral-multispectral fusion

As for HMFusion, let 𝐗 ∈ R𝑤 × ℎ × 𝐶  represent the ideal HR hy­

perspectral images, with spatial dimensions 𝑤 and ℎ, and 𝐶 spectral 

bands. Observed HR multispectral and LR hyperspectral images are 

denoted as 𝐌 ∈ R𝑤 × ℎ × 𝑐  and 𝐇 ∈ R𝑤′ × ℎ′ × 𝑐 , respectively, where 

𝑐 ≪ 𝐶. HMFusion aims at recovering HR hyperspectral images from HR 

multispectral and LR hyperspectral image pairs, as shown in Fig. 2(b).

The observed LR hyperspectral image 𝐇 originates from 𝐗 through 

spatial degradation, given by: 

𝐇 = 𝐷ℎ ∗ 𝐗 (4)

where 𝐷ℎ ∈ R𝑤′ℎ′ × 𝑤ℎ denotes the spatial degradation in hyperspec­

tral images, typically involving downsampling or Gaussian blurring. 

Generally, the degradation ratio 𝑟 = 4. The HR multispectral image 𝐌
results from spectral degradation of 𝐗, modeled as: 

𝐌 = 𝐗Φ𝑀 (5)

where Φ𝑀 ∈ R𝐶×𝑐  is the spectral response matrix of the multispectral 

sensor, representing spectral downsampling.

The goal of HMFusion is to reconstruct an estimate 𝐗̂ of the high-

resolution hyperspectral image 𝐗, which aligns with both the spatial 

fidelity of 𝐌 and the spectral fidelity of 𝐻 . This task can be formulated as 

an optimization problem by minimizing an energy function that ensures 

both spatial and spectral consistency: 

𝐗̂ = argmin
𝐗

‖𝐇 −𝐷ℎ ∗ 𝐗‖2𝐹 + ‖𝐌 − Φ𝑀𝐗‖2𝐹 + 𝜆R(𝐗) (6)

where the first term, ‖𝐌 − Φ𝑀𝐗‖2𝐹 , enforces spatial consistency with 

the HR multispectral image 𝐌, while the second term, ‖𝐇 −𝐷ℎ ∗ 𝐗‖2𝐹 , 

maintains spectral consistency with the LR hyperspectral image 𝐇. 

This framework enables the recovery of an accurate HR hyperspectral 

image 𝐗̂ that captures both high spatial resolution and rich spectral 

information.

3.1.3 . Spatio-temporal fusion

In spatio-temporal fusion, the goal is to recover HR time series data 

at all times from a limited set of LR image time series and sparse HR 

observations, as shown in Fig. 2(c). We assume that the LR time series 

data 𝐋𝑡 are degraded from HR time series data 𝐒𝑡 via spatial downsam­

pling in the time sequence T𝑆 . Specifically, the LR image is obtained by 

applying spatial degradation 𝐷𝑇 , such that: 

𝐋𝑡 = 𝐷𝑇 ∗ 𝐒𝑡 (7)

Additionally, the HR observations 𝐇𝑡 are available at specific time 

points 𝑡 ∈ T𝐻 ⊂ T𝑆 , where the high-resolution image is directly 

observed, i.e., 𝐇𝑡 = 𝐒𝑡 for 𝑡 ∈ T𝐻 .

Given the degradation model, our objective is to reconstruct the high-

resolution images 𝐒𝑡 for all time 𝑡 ∈ T𝑆 , including both the observed 

and unobserved time points. This is formulated as an optimization prob­

lem, where the goal is to minimize the error between the reconstructed 

images and the observed data, subject to spatio-temporal consistency 

constraints: 

𝐒̂ = argmin
𝐒

∑

𝑡∈T𝑆

‖𝐋𝑡 −𝐷𝑇 ∗ 𝐒𝑡‖2𝐹 +
∑

𝑡∈T𝐻

‖𝐇𝑡 − 𝐒𝑡‖2𝐹 + 𝜆R(𝐒) (8)

Here, the first term ensures temporal consistency between the recon­

structed and LR images, the second term enforces consistency with the 

HR observations, and the third term R(𝐒) is a regularization function 

that promotes temporal and spatial priors in the solution. The weight 𝜆
balances the contributions of the data fidelity and regularization terms.

3.1.4 . PolSAR fusion

In PolSAR fusion tasks, HR PolSAR data contain rich spatial and po­

larimetric information, typically represented by a scattering matrix 𝑆
and covariance matrix 𝐶𝑥, as shown in Fig. 2(d). The 𝑆 matrix for PolSAR 

data is: 

𝑆 =
[

𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

]

(9)

where 𝑆𝐻𝐻  and 𝑆𝑉𝑉  denote co-polarized channels (horizontal-

horizontal and vertical-vertical), and 𝑆𝐻𝑉  and 𝑆𝑉𝐻  represent cross-

polarized channels (horizontal-vertical and vertical-horizontal). In con­

trast, SinSAR data capture only one of these channels, providing limited 

polarimetric information compared to PolSAR data. When the reci­

procity condition holds and system noise is disregarded, the backscatter­

ing matrix can be transformed into a Lexicographic covariance matrix 

𝐶3 (Lee and Pottier, 2017): 

𝐶3 =
⎡

⎢

⎢

⎣

|𝑆𝐻𝐻 |

2 𝑆𝐻𝐻𝑆∗
𝐻𝑉 𝑆𝐻𝐻𝑆∗

𝑉𝑉
𝑆𝐻𝑉 𝑆∗

𝐻𝐻 |𝑆𝐻𝑉 |
2 𝑆𝐻𝑉 𝑆∗

𝑉𝑉
𝑆𝑉𝑉 𝑆∗

𝐻𝐻 𝑆𝑉𝑉 𝑆∗
𝐻𝑉 |𝑆𝑉𝑉 |

2

⎤

⎥

⎥

⎦

(10)

where ∗ denotes the complex conjugate. To facilitate analysis and com­

putation, 𝐶3 is often vectorized into a real-valued 1× 9 vector, 𝐶value, by 

separating each matrix element into its real and imaginary components: 

𝐶value = [𝑅11, 𝑅12, 𝐼12, 𝑅13, 𝐼13, 𝑅22, 𝑅23, 𝐼23, 𝑅33] (11)

where 𝑅𝑖𝑗  and 𝐼𝑖𝑗  represent the real and imaginary parts of the elements 

in 𝐶3, respectively. Thus, 𝐶𝑥 ∈ R𝑤×ℎ×9.

Due to system limitations or operational constraints, a scene of HR 

PolSAR data 𝐶𝑥 will degenerate into the observational LR PolSAR images 

𝐶𝑦 ∈ R𝑤′×ℎ′×9. Among them, both HR PolSAR image and LR PolSAR im­

age are three-dimensional matrices composed of 𝐶value, which represents 

the value of one pixel of 𝐶𝑥 and 𝐶𝑦. Let 𝐷𝑠 denote the spatial downsam­

pling operator. Thus, the relationship between HR and LR PolSAR data 

can be expressed as: 

𝐶𝑦 = 𝐷𝑠(𝐶𝑥) (12)

Since HR SinSAR data is a specific polarimetric channel extracted 

from 𝐶𝑥 through a mapping J𝑖(𝐶𝑥), where 𝑖 represents a chosen polari­

metric channel (e.g., 𝐻𝐻  or 𝐻𝑉∕𝑉𝐻or 𝑉𝑉 ): 

𝐼𝑥 = J𝑖(𝐶𝑥), 𝑖 ∈ {𝐻𝐻,𝐻𝑉 , 𝑉𝐻, 𝑉𝑉 } (13)

where 𝐼𝑥 ∈ R𝑤×ℎ×1 denotes the observed HR SinSAR data. To recon­

struct HR PolSAR data 𝐶𝑥 from the available observations 𝐼𝑥 and 𝐶𝑦, 
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the PolSAR fusion can be built as an optimization model: 

𝐶̂𝑥 = argmin
𝐶𝑥

‖𝐼𝑥 − J𝑖(𝐶𝑥)‖
2
𝐹 + ‖𝐶𝑦 −𝐷𝑠(𝐶𝑥)‖

2
𝐹 + 𝜆R(𝐶𝑥) (14)

where ‖J𝑖(𝐶𝑥) − 𝐼𝑥‖
2
𝐹  ensures consistency with the HR spatial details, 

‖𝐷𝑠(𝐶𝑥) − 𝐶𝑦‖
2
𝐹  enforces agreement with the fully polarimetric informa­

tion, R(𝐶𝑥) is a regularization term promoting spatial and polarimetric 

priors, and 𝜆 is a weighting factor balancing observation fidelity with 

regularization.

3.2 . Definition of spatial-X fusion

In this paper, we aim to propose a generalized fusion framework 

for these tasks involving spatial and X degradation. Generally, spatial 

degradation includes all downsampling operations related to spatial 

resolution, and we can unify them into a single spatial downsampling op­

eration matrix 𝐷spa. Thus, the unified expression for spatial degradation 

can be written as: 

𝐀 = 𝐷spa ∗ 𝐗 (15)

where 𝐀 denotes the observed LR remote sensing image with 𝐶𝑋  chan­

nels, 𝐗 means the ideal HR remote sensing image, and 𝐷spa is a unified 

matrix representing spatial downsampling, and its specific form depends 

on the task. In different tasks, spatial downsampling can involve dif­

ferent downsampling operations, such as 𝐷𝑚 in pan-sharpening, 𝐷ℎ in 

HMFusion, 𝐷𝑇  in STFusion, and 𝐷𝑠 in PolSAR fusion.

Besides the spatial information, different remote sensing images tend 

to provide various types of information, including multispectral, hyper­

spectral, temporal, and polarimetric information. To build a universal 

framework, we propose a novel concept called X information, which 

encompasses all the information in remote sensing images except the 

spatial domain. Thus, X degradation is proposed as: 

𝐁 = 𝐗ΦX (16)

where 𝐁 denotes the observed HR remote sensing image with poor X 

information (with 𝑐𝐁 channels), ΦX represents the X degradation with 

different degradation operations for various tasks.

In pan-sharpening, ΦX is in the form of Φ𝑃 ∈ R𝑐×1, which means 

the spectral response functions of panchromatic sensors, degenerate the 

multispectral image to a panchromatic image.

In HMFusion, ΦX equals Φ𝑚 ∈ R𝐶×𝑐 , which means the spectral 

transformation from hyperspectral domain into multispectral domain, 

degenerating the hyperspectral image to a multispectral image.

In ST fusion, ΦX can be regarded as Φ𝑡 ∈ RT𝑆×T𝐻 , which is defined 

as a sampling matrix, selecting specific remote sensing images in time 

phases T𝐻  from time set T𝑆 . For instance, the time set T𝑆 = 𝑡1, 𝑡2, 𝑡3 and 

we select 𝑡1, 𝑡2 as T𝐻 . The Φ𝑡 is formulated as: 

Φ𝑡 =
⎡

⎢

⎢

⎣

1 0
0 1
0 0

⎤

⎥

⎥

⎦

(17)

In PolSAR fusion, ΦX = Φ𝑠 ∈ R4×1, which can also be regarded 

as a sampling matrix, choosing the different polarimetric channels for 

different applications. If 𝐻𝐻  mode is chosen, Φ𝑠 can be written as: 

Φ𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

(18)

With spatial degradation and X degradation, spatial-X fusion can be 

defined as integrating HR spatial details in 𝐁 with fine X information 𝐀
and recovering HR X information 𝐗, which is an optimization problem: 

𝐗̂ = argmin
𝐗

‖𝐀 −𝐷spa ∗ 𝐗‖2𝐹 + ‖𝐁 − 𝐗ΦX‖
2
𝐹 + 𝜆R(𝐗) (19)

where R(𝐗) is a regularizer that imposes prior knowledge, ‖ ⋅ ‖𝐹  rep­

resents the Frobenius norm of data-fidelity terms, 𝐹 = 2 in this paper, 

and 𝜆 is a trade-off parameter between the regularizer and data-fidelity 

terms.

4 . Methodology

In this part, we first derive the iterative solution to the spatial-

X fusion problem based on optimization model. Then, we leverage a 

model-driven solution flow to guide the construction of the deep learn­

ing network, and finally introduce the spatial-X intrinsic interaction 

prior to explore the latent knowledge within the spatial-X domain.

4.1 . The optimization-based solution

While the energy function ensures consistency between the recon­

structed and observed images and incorporates image priors, solving this 

optimization problem directly is challenging due to the various priors in­

volved. To decouple the regularization and data-fidelity terms in Eq. (19) 

and facilitate minimization, we apply a variable-splitting technique by 

introducing an auxiliary variable 𝐙, thus reformulating the optimization 

problem with a constraint 𝐙 = 𝐗: 

𝐗̂ = argmin
𝐗

1
2
‖

‖

‖

𝐀 −𝐷spa𝐗
‖

‖

‖

2

2
+ 1

2
‖

‖

𝐁 − 𝐗ΦX‖‖
2
2 + 𝜆R(𝐙)

s.t. 𝐙 = 𝐗
(20)

Applying the half-quadratic splitting method yields a modified cost 

function: 

L𝜇 (𝐗,𝐙) =
1
2
‖

‖

‖

𝐀 −𝐷spa𝐗
‖

‖

‖

2

2
+ 1

2
‖

‖

𝐁 − 𝐗ΦX‖‖
2
2

+
𝜇
2
‖𝐙 − 𝐗‖22 + 𝜆R(𝐙)

(21)

where 𝜇 serves as a penalty parameter. This reformulation allows us to 

decompose the original optimization problem into two subproblems that 

can be solved independently and efficiently, 

⎧

⎪

⎨

⎪

⎩

𝐗̂ = argmin
𝐗

1
2
‖

‖

‖

𝐀 −𝐷spa𝐗
‖

‖

‖

2

2
+ 1

2
‖

‖

𝐁 − 𝐗ΦX‖‖
2
2 +

𝜇
2
‖𝐙 − 𝐗‖22

𝐙̂ = argmin
𝐙

1
2
‖𝑍 − 𝐗‖22 +

𝜆
𝜇R(𝐙)

(22)

In the 𝐗-subproblem, an approximate solution is iteratively updated 

using the gradient descent algorithm: 

𝐗̂𝑘+1=𝐗𝑘−𝜖(𝐗𝑘ΦXΦ𝑇
X+𝐷

𝑇
spa𝐷spa𝐗𝑘−𝐁Φ𝑇

X−𝐷
𝑇
spa𝐀+𝜇𝐗𝑘−𝜇𝐙𝑘)

= 𝛿𝐗𝑘−𝜖𝐗𝑘ΦXΦ𝑇
X−𝜖𝐷

𝑇
spa𝐷spa𝐗𝑘+𝜖𝐁Φ𝑇

X+𝜖𝐷
𝑇
spa𝐀+𝜖𝜇𝐙𝑘

(23)

where 𝜖 is the optimization stride, and 𝛿 = 1 − 𝜖𝜇. The 𝐙-subproblem, 

which incorporates prior knowledge, is addressed using proximal oper­

ators: 

𝐙̂𝑘 = Prox(𝐗𝑘) = argmin
𝐙

1
2
‖

‖

𝐙 − 𝐗𝑘
‖

‖

2
2 +

𝜆
𝜇
R(𝐙) (24)

By iteratively updating these two subproblems, we can efficiently 

solve Eq. (19) via alternating updates for 𝐗 and 𝐙.

4.2 . Model-driven deep learning architecture

Building on Eqs. (23) and (24), we propose a model-driven deep 

learning architecture for spatial-X fusion, where all operators are un­

rolled into convolutional layers. The architecture comprises 𝐾 stages, 

corresponding to 𝐾 iterations in the optimization-based solution. At 

each stage, the proposed SpaXFus framework takes the HR data 𝐁, LR 

data 𝐀, and the previous output 𝐗𝑘 as inputs, generating 𝐗𝑘+1 as the 

updated output.

Within SpaXFus, end-to-end CNNs are leveraged to learn six key com­

ponents derived from Eq. (23): the memory term 𝛿𝐗𝑘, which preserves 
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information from previous iterations and enables SpaXFus to progres­

sively optimize the output by integrating multi-stage information; the 

degradation and restoration terms within the spatial and X domains, 

which align with the data flow of the optimization-based solution and 

handle the degradation and subsequent restoration; the reconstruction 

terms derived directly from inputs 𝐀 and 𝐁, which ensure fidelity to the 

original data; and the implicit image priors embedded in the update of 

𝐙𝑘, which provide regularization and consistency. These components are 

integrated to update 𝐗𝑘+1, following Eq. (29), where 𝐗𝑘+1 is computed 

as a combination of memory, degradation, restoration, and prior terms:

𝐌𝑘 = 𝛿 ⋅ 𝐗𝑘 (25)

𝐂𝑘 = 𝜖 ⋅ 𝐗𝑘ΦXΦ𝑇
X + 𝜖 ⋅𝐷𝑇

spa𝐷spa𝐗𝑘 (26)

𝐑𝑘 = 𝜖 ⋅ 𝐁Φ𝑇
X + 𝜖 ⋅𝐷𝑇

spa𝐀 (27)

𝐄𝑘 = 𝜖𝜇 ⋅ Prox(𝐗𝑘) (28)

𝐗𝑘+1 = 𝐌𝑘 − 𝐂𝑘 + 𝐑𝑘 + 𝐄𝑘 (29)

where 𝐌𝑘 incorporates memory, 𝐂𝑘 and 𝐑𝑘 model degradation and 

restoration, and 𝐄𝑘 captures implicit priors.

Following model-driven approach, the network architecture reflects 

the outlined data flow as shown in Fig. 1. In each stage, channel attention 

mechanisms are employed to adaptively learn hyperparameters 𝛿, 𝜖, and 

𝜇, allowing for stage-specific and channel-sensitive weight adjustments. 

Firstly, the memory term 𝐌𝑘 is transformed into a learnable module: 

𝐌𝑘 = CAM𝛿(𝐗𝑘), (30)

where CAM𝛿  denotes a channel attention module responsible for param­

eter 𝛿.

In Eqs. (26) and (27), ΦX represents the degradation operator for 

X-domain information. This operator is implemented as a point-wise 

convolution (1 × 1 convolution) in SpaXFus, with Φ𝑇
X realized as its 

inverse operation (a 𝑐𝐁 × 𝐶𝐗 point-wise convolution). For spatial degra­

dation 𝐷spa, stride convolution is employed to approximate the image 

degradation process, eliminating the need for predefined point spread 

functions. The inverse degradation, 𝐷𝑇
spa, is modeled using a learnable 

deconvolution operation:

𝐂𝑘 = CAM𝜖
(

PConv−1
(

PConv
(

𝐗𝑘
)))

+ CAM𝜖
(

DConv
(

SConv
(

𝐗𝑘
)))

(31)

𝐑𝑘 = CAM𝜖
(

PConv−1 (𝐁)
)

+ CAM𝜖 (DConv (𝐀)) (32)

where PConv and PConv−1 are point-wise convolution and its inverse, 

SConv is stride convolution for spatial downsampling, and DConv is the 

corresponding deconvolution.

To address the proximal operator in Eq. (28), we introduce the 

Spatial-X Intrinsic Interaction Prior (SpaXIP). SpaXIP captures both 

local-global spatial dependencies and intrinsic X-domain interactions, 

enriching the modeling of implicit image priors: 

𝐄𝑘 = CAM𝜖𝜇
(

SpaXIP(𝐗𝑘)
)

, (33)

where SpaXIP represents the spatial-X intrinsic interaction network.

Before the first stage, initial outputs 𝐗𝐴
1  and 𝐗𝐵

1  are reconstructed 

from 𝐀 and 𝐁 through inverse degradation streams:

𝐗𝐴
1 = DConv (𝐀) (34)

𝐗𝐵
1 = PConv−1 (𝐁) (35)

The LR data 𝐀 is upsampled to match the spatial resolution of 

𝐁, while 𝐁 is expanded to the channel dimension of 𝐀. These initial 

reconstructions are fused to initialize 𝐗1: 

𝐗1 = IFus
(

𝐗𝐀
1 ,𝐗

𝐁
1
)

(36)

where IFus is a weighted fusion module for fusing multi-source informa­

tion.

4.3 . Spatial-X intrinsic interaction prior

In image fusion tasks, it is crucial to extract as much spatial and 

X information from the images as possible and capture the relation­

ships between them. As stated in Tobler’s First Law of Geography, 

“everything is related to everything else” (Tobler, 1970), highlighting 

the interconnectedness of all phenomena on Earth. Accordingly, effec­

tively reconstructing HR remote sensing data from low-quality images 

requires leveraging both global dependencies and local interactions. 

With the advancement of deep learning, numerous algorithms have 

emerged to capture internal interactions, including attention mecha­

nisms and transformers. Among these, the structured state space model 

(SSM) has garnered widespread attention from researchers due to its ac­

curate learning capabilities and efficient computational speed (Gu et al., 

2022). 

4.3.1 . Preliminaries

The SSM draws inspiration from continuous dynamical systems. This 

approach models sequences 𝑥(𝑡) by projecting them through a hidden 

state ℎ(𝑡) ∈ R𝑁 , defined by: 

ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡),

𝑦(𝑡) = 𝐶ℎ(𝑡) +𝐷𝑥(𝑡),
(37)

where 𝐴 controls state transitions, 𝐵 and 𝐶 handle input and output 

projections, respectively, and 𝐷 represents the memory weight of the 

previous state.

To adapt the model for discrete settings, a timescale parameter Δ is 

introduced. Using zero-order hold assumption, the continuous matrices 

𝐴 and 𝐵 are converted into discrete forms 𝐴 and 𝐵: 

𝐴 = exp(Δ𝐴),

𝐵 = (Δ𝐴)−1(exp(Δ𝐴) − 𝐼)Δ𝐵.
(38)

The system then operates in discrete time, with: 

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡,

𝑦𝑡 = 𝐶ℎ𝑡 +𝐷𝑥𝑡,
(39)

where Δ controls step size for temporal modeling.

Finally, Structured State Space for Sequence Models (S4) calculates 

outputs using a convolutional operation: 

𝐾 =
(

𝐶𝐵,𝐶𝐴𝐵,… , 𝐶𝐴
𝑁−1

𝐵
)

,

𝑦 = 𝑥 ∗ 𝐾,
(40)

where 𝐾 represents the convolution kernel. By combining state-space 

dynamics and signal processing techniques, S4 efficiently models long-

range dependencies in sequences (Guo et al., 2025).

4.3.2 . Overall architecture

In SpaXFus, SpaXIP is employed to explore the latent prior knowl­

edge in 𝐗 following Eq. (33). The overview of SpaXIP is shown in Fig. 3, 

consisting of global dependency modeling and channel interaction 

enhancement.

In SpaXIP, we proposed a spatial-X interaction module to explore the 

global relationship across both spatial and X domains, encompassing 

shallow feature extraction and spatial-X SSM. Furthermore, the statis­

tical characteristics of different channels were analyzed in X-intrinsic 

interaction module, thereby enhancing local interactions among chan­

nels. To address the challenge of fully capturing diverse types of X 

information, a channel enhancement block was incorporated after each 

module, ensuring that the network retains and reinforces X information 

in deeper layers.
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Fig. 3. Overview of spatial-X intrinsic interaction network.

Fig. 4. The framework of spatial-X state space model, where 𝐴 controls state transitions, 𝐵 and 𝐶 handle input and output projections, respectively, 𝐷 presents the 

memory weight of the previous state, and arrow shows the dataflow.

4.3.3 . Spatial-X interaction module

As illustrated in Fig. 3, there are 𝑛 spatial-X interaction modules in 

SpaXIP. At each model-driven DL stage, given the updated 𝐗𝑘, we first 

apply a LayerNorm layer to enhance the model’s stability. Subsequently, 

two branches, consisting of the Linear layer followed by SiLU activation 

function, are used to extract deeper features. 

𝐅𝑙1
𝑘 = LSL(LN(𝐅𝑙−1

𝑘 ))

𝐅𝑙2
𝑘 = LSL(LN(𝐅𝑙−1

𝑘 ))
(41)

where 𝑘 ≤ 𝐾 denotes the 𝑘-th model-driven DL stage, 𝑙 ≤ 𝑛 denotes the 

𝑙-th spatial-X interaction module, 𝐅𝑙−1
𝑘  is the output from the previous 

spatial-X interaction module, and 𝐅0
𝑘 corresponds to 𝐗𝑘. The feature 𝐅𝑙1

𝑘
is then fed into SXSSM to capture global dependencies across both spatial 

and channel domains. 

𝐖𝑙
𝑘 = SXSSM(𝐅𝑙1

𝑘 ) (42)

The architecture of SXSSM is illustrated in Fig. 4. In this part, the 

input features are cropped into patches and rearranged into multiple 

sequences using four distinct scanning patterns. The global dependen­

cies within each sequence are computed based on Eqs. (38) and (39) in 

the SSM. Finally, the global dependency weights are aggregated using a 

patch ensemble approach.

The global dependency weights 𝐖𝑙
𝑘 are used to refine the spatial-X 

features 𝐅𝑙2
𝑘  via a Linear layer and selective memory connection: 

𝐅𝑙3
𝑘 = Linear(𝐖𝑙

𝑘◦𝐅
𝑙2
𝑘 ) + 𝛼𝐅𝑙−1

𝑘 (43)

where 𝛼 represents a learnable parameter and ◦ denotes Hadamard prod­

uct. To further enhance the model’s ability to capture X information, a 

Channel Enhance Block (CEB) is applied: 

𝐅𝑙
𝑘 = CEB(𝐅𝑙3

𝑘 ) (44)

As a result, we obtain the output of the 𝑙-th spatial-X interaction module, 

𝐅𝑙
𝑘. The CEB is composed of a residual channel attention, integrated with 

a LayerNorm layer.

4.3.4 . X-intrinsic interaction module

In addition to capturing global dependencies across spatial and X 

domains, X-intrinsic interaction plays a crucial role in remote sensing 

image fusion. To address this, we introduce an X-intrinsic interaction 

module at the end of the SpaXIP framework.

Initially, we extract statistical features such as the maximum, av­

erage, minimum, and standard deviation. These features effectively 

characterize the data distribution across different channels, facilitating 

the exploration of X-intrinsic interactions. The extracted features are 

then fed into further feature extraction processes. 

𝐉1𝑘 = LSL(LN(XSE(𝐅𝑛
𝑘)))

𝐉2𝑘 = LSL(LN(XSE(𝐅𝑛
𝑘)))

(45)

where 𝐅𝑛
𝑘 is the output of the final spatial-X interaction module. The 

feature 𝐉1𝑘 is then passed into XISSM to capture interactions among 

channels. 

𝐖X
𝑘 = XISSM(𝐉1𝑘) (46)

The architecture of XISSM is shown in Fig. 5. In this part, simi­

lar channels are grouped, and the channel order is rearranged to form 

multiple sequences through channel permutation. The X-intrinsic inter­

actions of each sequence are calculated using SSM. Finally, the multiple 

X-intrinsic interactions are integrated in channel ensemble.

Then, X-intrinsic interactions 𝐖X
𝑘  are applied to 𝐉2𝑘, followed by a 

Linear layer and selective memory connection, before being passed into 

CEB: 

𝐉𝑘 = CEB(Linear(𝐖X
𝑘 ◦𝐉

2
𝑘) + 𝛼XSE(𝐅𝑛

𝑘)) (47)

Finally, the fusion of results from both SXM and XIM yields the final 

output, 𝐙𝑘, incorporating prior knowledge: 

𝐙𝑘 = Prok(𝐗𝑘) = Conv(𝐉𝑘)◦𝐅𝑛
𝑘 (48)

where Conv(⋅) represents a 1D convolutional layer, which ensembles 

𝐉𝑘 ∈ R𝐶×4 into R𝐶×1.

5 . Experiments

In this section, the proposed SpaXFus method is applied to four 

typical remote sensing spatial-channel fusion tasks, including pan-

sharpening, HMFusion, STFusion, and PolSAR fusion. Existing per­

formance evaluations are often conducted by calculating quantitative 
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Fig. 5. The framework of X-intrinsic state space model.

metrics or through visual comparisons. However, considering that image 

fusion tasks are ultimately designed to serve downstream applications 

in real-world scenarios, this study introduces four corresponding down­

stream applications for each fusion task to verify whether the algorithms 

can genuinely integrate more useful information, including vegeta­

tion index product generation, fine-grained image classification, change 

detection, and SAR vegetation extraction, respectively. All quantita­

tive results and visual comparisons are provided in the supplementary 

materials (Tables S1–S3 and Figures S1–S4).

5.1 . Datasets

In this study, methods in each fusion task are evaluated using two 

datasets to assess the performance differences across different sensors.

Pan-sharpening: (1) QB: The QuickBird satellite captures a panchro­

matic (PAN) channel spanning 450–900 nm, alongside a multispectral 

image (MSI) comprising four bands within the visible to near-infrared 

(NIR) spectrum. The PAN channel has a spatial resolution of 61 cm, 

while the MS channels have a resolution of 2.44 m. The QB dataset used 

in this study consists of PAN images divided into 5120 patches of size 

256 × 256, along with their corresponding MS patches. (2) Gaofen2: The 

Gaofen-2 satellite, equipped with dual PAN/MS cameras, collects images 

with a resolution of 0.81 m in the PAN channel and 3.24 m in four MS 

channels. The GF2 dataset includes 4122 patches, each sized 256 × 256, 

along with their corresponding MS patches.

HMFusion: (1) CAVE: The CAVE dataset,1 consisting of 32 scenes 

(512 × 512 each), is widely used in HSI processing. It provides hyper­

spectral images (HSIs) spanning 400–700 nm in 31 bands with a spectral 

resolution of 10 nm, along with corresponding RGB images. Six scenes 

are used for testing, while the rest are used for training. Training data 

includes RGB patches cropped to 128×128 with a stride of 96, and corre­

sponding HS patches downsampled by a factor of four. (2) Sen2Chikusei:

The Chikusei dataset,2 captured by the Headwall HyperspecVNIR-C 

sensor, covers agricultural and urban areas in Chikusei, Japan, with di­

mensions of 2517 × 2335. It contains 128 spectral bands (363–1018 nm) 

at a spatial resolution of 2.5 m. The image is divided into 2384 patches 

of size 128×128 as ground truth (GT), downsampled by four to create in­

put LRHS data. Sentinel-2 data is simulated using Hysure (Simoes et al., 

2014) on the Chikusei dataset.

STFusion: (1) Land4Mod: We use the AHB data proposed by Li et al. 

(2020a). All the high-resolution images (Landsat images with 30 m spa­

tial resolution) are acquired by Landsat-8 OLI with six bands, including 

blue, green, red, NIR, short-wave infrared-1, and short-wave infrared-2. 

The low-resolution images (MODIS images with 500 m spatial resolu­

tion) are geometrically transformed based on the corresponding Landsat 

images. All Landsat images are upsampled to 480 m spatial resolution 

and cropped into 2340 patches of size 256 × 256, so the resolution ra­

tio is 16 in this dataset. (2) Sen2Pla: DynamicEarthNet (Toker et al., 

2022) is a daily multi-spectral satellite dataset for semantic change 

1 http://www.cs.columbia.edu/CAVE/databases/.
2 https://naotoyokoya.com/Download.html.

segmentation, consisting of monthly 10 m Sentinel-2 images and daily 

3 m PlanetFusion images.3 We selected 100 time pairs in 50 scenes with 

high-quality Sentinel-2 images to build the Sen2Pla dataset. All Sentinel-

2 images are upsampled to 9 m, and PlanetFusion images are cropped 

into 5302 patches of size 96 × 96.

PolSAR Fusion: The training samples for PolSAR fusion are obtained 

from RadarSat-2 operating in high-resolution mode (8 m), comprising 

23,232 HR PolSAR samples, each with a size of 40× 40, along with their 

corresponding SinSAR. The HR PolSAR samples are subsequently down­

sampled by a factor of two to simulate the input LR PolSAR data. (1) 

San Francisco: A RadarSat-2 scene covering San Francisco, with a spatial 

size of 2400 × 2400, is selected, and the simulation process is applied to 

generate testing data. (2) Quebec: The SAR data covering Quebec is real-

world data acquired in both standard mode (25 m) and high-resolution 

mode. The standard-mode data are upsampled to 16 m to maintain a 

resolution ratio of two.

For Pan-sharpening, Sen2Chikusei, and STFusion datasets, 90 % of 

them are allocated for training, and the remaining are used for testing.

5.2 . Comparison methods

In pan-sharpening task, we select seven traditional methods for com­

parison, including BDSD (Garzelli et al., 2007), Adaptive Component 

Substitution with Partial Replacement (PRACS) (Choi et al., 2010), GSA 

(Aiazzi et al., 2007), ATWT-M3 (Ranchin and Wald, 2000), MTF-GLP-

HPM (Aiazzi et al., 2006), AWLP (Otazu et al., 2005), and TV (Palsson 

et al., 2013), involving CS-based, MRA-based and VO-based algorithms. 

As for deep learning-based algorithms, PanNet (Yang et al., 2017), 

DRPNN (Wei et al., 2017), MSDCNN (Yuan et al., 2018), TFResNet (Liu 

et al., 2020c), TFMamba, SSDiff (Zhong et al., 2024), and MambaIR (Guo 

et al., 2025) are compared. TFMamba is an improved version that applies 

the Mamba module (Guo et al., 2025) to TFResNet to demonstrate the 

effectiveness of SSM. SSDiff as a diffusion-based method and MambaIR 

as an SSM-based method are two state-of-the-art algorithms.

In HMFusion, Hysure (Simoes et al., 2014), CNMF (Yokoya et al., 

2011), FUSE (Wei et al., 2015), CSU (Lanaras et al., 2015), CSTF (Li 

et al., 2018b), NSSR (Dong et al., 2016), LTMR (Dian and Li, 2019), 

GTNN (Dian et al., 2024), PSRT (Deng et al., 2023), MSST (Jia et al., 

2023), SSRNET (Zhang et al., 2020), Fusformer (Hu et al., 2022), PNXnet 

(He et al., 2022) and TFMamba are selected as comparison methods.

In STFusion, STARFM (Gao et al., 2006), FSDAF (Zhu et al., 2016), 

Fit-FC (Wang and Atkinson, 2018), StfNet (Liu et al., 2019), STTFN (Yin 

et al., 2021), MUSTFN (Qin et al., 2022), ECPW-STFN (Zhang et al., 

2024b), and TFMamba are used to verify the superiority of the proposed 

SpaXFus. The first three are traditional algorithms and the remaining are 

based on deep learning.

In PolSAR fusion, we compared our SpaXFus with Bicubic, SRPSC 

(Zhang et al., 2011), MSSR, PSSR (Shen et al., 2020), MSPSRN (Lin et al., 

2023), PSFN (Lin et al., 2022), and FDFNet (Lin et al., 2021b). Bicubic 

3 https://www.planet.com/pulse/planet-announces-powerful-new-products-

at-planet-explore-2020/.
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Table 1 

Quantitative comparisons of pan-sharpening on both QuickBird and Gaofen2 datasets. The best is in bold, and the second best is 

underlined.

Method QuickBird Gaofen2

CC mPSNR mSSIM SAM ERGAS CC mPSNR mSSIM SAM ERGAS

BDSD 0.9351 41.8275 0.9431 2.2678 2.0736 0.9522 37.7822 0.9374 2.2495 2.6582

PRACS 0.9511 44.2434 0.9566 1.8110 1.4983 0.9186 38.2479 0.8999 2.1987 2.3423

GSA 0.9389 42.2266 0.9444 2.0716 1.9624 0.9557 38.5998 0.9338 2.0837 2.3930

ATWT-M3 0.9355 42.6250 0.9392 2.3004 1.8965 0.9650 41.6236 0.9580 2.2792 1.9615

MTF-GLP-HPM 0.9368 42.4101 0.9377 1.9326 1.5219 0.9576 39.9379 0.9447 1.8689 2.2295

AWLP 0.9239 41.5724 0.9382 2.0083 1.9605 0.9463 38.4166 0.9278 1.8262 2.4017

TV 0.9485 41.9099 0.9477 2.1589 1.9592 0.9838 40.7908 0.9756 2.5083 2.0329

PanNet 0.9436 43.7540 0.9638 1.8252 1.4921 0.9756 41.5536 0.9676 2.2735 1.6732

DRPNN 0.9302 42.5424 0.9443 2.0893 1.7648 0.9793 41.4807 0.9760 2.9592 1.8487

MSDCNN 0.9542 44.6686 0.9633 1.6680 1.4062 0.9792 41.6150 0.9763 2.7362 1.7741

TFResNet 0.9598 44.5490 0.9684 1.5521 1.3148 0.9832 41.7154 0.9784 2.5056 1.6961

TFMamba 0.9558 46.3847 0.9774 1.2494 1.0390 0.9827 42.9195 0.9799 2.0728 1.4775

SSDiff 0.9203 41.5058 0.9435 2.1681 1.7016 0.9733 41.9928 0.9657 1.9595 1.6910

MambaIR 0.9818 47.8015 0.9845 1.1090 0.8562 0.9850 43.6362 0.9813 1.7045 1.3017

SpaXFus 0.9827 48.0588 0.9855 1.0693 0.8289 0.9853 44.1236 0.9839 1.6100 1.2063

and SRPSC are two traditional methods and the others are deep learning-

based methods. Moreover, MSSR and PSSR are two SAR image super-

resolution methods. 

5.3 . Evaluation metrics

In this work, five quantitative metrics are utilized to evaluate the fu­

sion performance from spatial and spectral domains for the first three 

tasks. Correlation Coefficient (CC), mean Peak Signal-to-Noise Ratio 

(mPSNR) in decibel units, and mean Structural SIMilarity (mSSIM) indi­

cate spatial fidelity (Wang et al., 2004). Spectral Angle Mapper (SAM) 

in degrees evaluates the spectral distortion (Kruse et al., 1993). Erreur 

Relative Globale Adimensionnelle de Synthèse (ERGAS) (Wald, 2000) is 

a comprehensive metric. The higher values for CC, mSSIM, and mPSNR 

indicate better image quality. On the contrary, lower RMSE, SAM, and 

ERGAS indicate less image distortion.

As for the PolSAR fusion, due to the unique radiation characteristics 

of SAR data, we perform Pauli decomposition of the coherency matrix 

to obtain three polarimetric components: 

𝑃1 =
𝑆HH + 𝑆VV

√

2
, 𝑃2 =

𝑆HH − 𝑆VV
√

2
, 𝑃3 =

2𝑆HV
√

2
(49)

where 𝑃1, 𝑃2, and 𝑃3 denote the odd scattering, double scattering, 

and volume scattering mechanisms, respectively. Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), SAM, mPSNR, and ERGAS 

are calculated on (𝑃1, 𝑃2, 𝑃3) to assess PolSAR fusion performance. 

Additionally, the Riemannian distance 𝑑𝑅 between the predicted and 

ground truth 𝐶3 matrices is utilized, effectively capturing their geomet­

ric relationships while fully considering manifold properties.

5.4 . Experimental setup

5.4.1 . Implementation details

In this study, the Adamax optimization algorithm is employed to 

train SpaXFus. The initial learning rate is set to 0.001 and follows 

the OneCycleLR adjustment strategy, which dynamically changes the 

learning rate during training to improve performance. All CNN-based 

models are trained using the PyTorch framework in a Linux environ­

ment with 1 TB RAM and an Nvidia A40 GPU. Traditional methods are 

implemented in MATLAB on a system with an Intel Core i7-1355U CPU 

(1.70 GHz). In different fusion tasks, all the models have been retrained.

5.4.2 . Experimental workflow for downstream applications

In the experiments of this paper, for each fusion task, we used 

datasets from two different sensors to construct a benchmark for evaluat­

ing fusion performance. To analyze the impact of fusion on downstream 

tasks, we then selected data from a single sensor for each task to assess 

downstream performance, thereby examining how fusion quality affects 

these tasks.

Specifically, in the pansharpening task, we used Gaofen-2 data to 

generate NDVI products using ENVI, and evaluated the impact of fusion 

on NDVI generation using metrics such as Coefficient of Determination 

(R2), RMSE, and MAE. In HMFusion, we selected the Chikusei dataset, 

which provides refined classification labels (Zhu et al., 2026). We em­

ployed an SVM algorithm together with the official labels to produce 

full-scale ground truth labels, and then randomly sampled 10 % of the 

data to examine the influence of fusion on classification accuracy before 

and after fusion using Overall Accuracy (OA), Kappa coefficient, and 

F1-score.

In STFusion, we used the Sen2Pla dataset to evaluate the downstream 

change detection task. Since Sen2Pla is derived from DynamicEarthNet, 

we were able to obtain corresponding change detection labels for perfor­

mance assessment. The indices include F1-score, Intersection over Union 

(IoU), Precision, and Recall. Finally, for the PolSAR fusion task, the 

RadarSat-2 images over San Francisco from the dataset provided by Liu 

et al. (2022) include vegetation extraction labels. We used the original 

fusion results, after registration and cropping, to assess the accuracy of 

downstream SAR vegetation extraction using Producer’s Accuracy (PA), 

User’s Accuracy (UA), and IoU. 

5.5 . Pan-sharpening

Pan-sharpening is a typical remote sensing image fusion task that in­

volves spatial and spectral information. In this part, we compare the 

fusion performance and also compare the differences in Normalized 

Difference Vegetation Index (NDVI) products generated from the fused 

results on Gaofen2 dataset.

5.5.1 . Comparisons on pan-sharpening

Table 1 reports the quantitative results. Fig. 6 shows the visualiza­

tion comparisons. Traditional methods such as BDSD, PRACS, and GSA 

demonstrated good performance, particularly on the QuickBird dataset. 

However, they generally underperformed compared to deep learning-

based methods across most evaluation metrics as shown in Fig. 6(r). On 

the Gaofen2 dataset, methods like PRACS and ATWT-M3 showed rel­

atively better performance, especially in terms of CC, mPSNR (Wang 

et al., 2004), and mSSIM, but still fell short when compared to deep 

learning-based techniques.

Deep learning algorithms, including PanNet, DRPNN, MSDCNN, and 

TFResNet, delivered excellent results across both datasets, with supe­

rior mPSNR, mSSIM, and SAM scores. MSDCNN and TFResNet stood 

out on the QuickBird dataset, with high mPSNR and mSSIM values, and 
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Fig. 6. Visualization comparisons of pan-sharpening on Quickbird dataset.

TFResNet also performed well in terms of SAM (Kruse et al., 1993) and 

ERGAS (Wald, 2000). SSDiff, a diffusion-based method, performed im­

pressively on QuickBird, particularly in terms of mPSNR and mSSIM. On 

the Gaofen2 dataset, MambaIR, an SSM-based method, excelled in CC, 

mPSNR, and mSSIM. 

The proposed SpaXFus algorithm outperformed all other methods 

on both datasets. SpaXFus achieved the highest CC, mPSNR, and mSSIM 

scores, with the lowest SAM and ERGAS values, as confirmed by visual 

inspection. Compared to MambaIR, SpaXFus showed a slight but con­

sistent advantage in most metrics. These results, both quantitative and 

visual, demonstrate that SpaXFus is a highly effective algorithm for pan-

sharpening tasks, surpassing existing state-of-the-art methods in both 

traditional and deep learning-based approaches.

5.5.2 . Validation through NDVI product generation

Most pan-sharpening studies focus on comparing image quality met­

rics, often using RGB composites for visualization. This overlooks a 

key feature of remote sensing MS images: the inclusion of NIR bands, 

which are crucial for monitoring vegetation health. To address this, 

we evaluate fused MSIs through NDVI product generation, providing a 

more comprehensive assessment of fusion algorithms’ ability to restore 

non-visible spectral bands.

Fig. S1 shows the NDVI results. Compared to NDVI from the original 

MS data, all methods improve spatial detail. Among traditional methods, 

CS-based algorithms outperform MRA-based ones but tend to underes­

timate NDVI in low-value (blue) regions due to poor NIR preservation. 

Deep learning methods, including DRPNN, TFResNet, and MambaIR, re­

cover details well without notable underestimation or overestimation, 

while MSDCNN overestimates in blue regions. The proposed SpaXFus 

achieves comparable spatial details to CS-based methods while avoiding 

estimation errors, demonstrating strong recovery across spectral bands.

Fig. 7 provides quantitative comparisons with ground truth. BDSD, 

TV, TFResNet, and SSDiff underestimate low NDVI values, with TV, 

TFResNet, and SSDiff also overestimating high values. ATWT-M3 tends 

to overestimate overall. In contrast, SpaXFus achieves the highest 𝑅2

and lowest error, confirming its ability to preserve spatial and spectral 

information effectively.

5.6 . Hyperspectral-multispectral fusion

HMFusion can integrate spatial details with hyperspectral infor­

mation, which can effectively reflect the subtle differences in surface 

objects. Thus, after HMFusion, we also introduce fine-grained image 

classification to verify the reliability of the fused information in this 

subsection.

5.6.1 . Comparisons on HMFusion

Based on the quantitative results in Table 2 and the visual results in 

Fig. 8, SpaXFus outperforms all comparison methods on both datasets. 

On the CAVE dataset, it achieves the highest CC, mPSNR, and mSSIM 

values, as well as the lowest SAM and ERGAS scores, demonstrating its 

ability to produce high-quality fused images. This is also evident in the 

visual results, where SpaXFus delivers clearer and more detailed fused 

images than other methods. As shown in Fig. 9, all methods recover ac­

curate spectra for fake pepper, but only SpaXFus works well on the real 

pepper location. Additionally, SpaXFus outperforms TFMamba, high­

lighting the effectiveness of the model-driven framework and Spatial-X 

interaction.

In the Sen2Chikusei dataset, SpaXFus again outperforms all other 

methods, achieving the highest CC, mPSNR, and mSSIM scores. The per­

formance of Fusformer remains strong in terms of mPSNR, but SpaXFus 

achieves the best results across the board, including the lowest SAM and 

ERGAS values. Compared to TFMamba, SpaXFus achieves superior re­

sults in all metrics, particularly in SAM and ERGAS, indicating a more 

accurate fusion quality. Visually, SpaXFus consistently produces sharper 

and more precise images, with finer details preserved, particularly in 

regions of complex texture and high spatial resolution.

Overall, the results across both datasets demonstrate that SpaXFus 

not only excels in quantitative metrics but also offers significant im­

provements in visual image quality, outperforming existing state-of-the-

art methods such as Fusformer and TFMamba in all major evaluation 
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Fig. 7. Relations between the different estimated NDVIs and the GT. Black lines denote the ideal relationship 𝑦 = 𝑥, and red lines illustrate the linear regression 

results. The color illustrates the density of samples. Goodness of fit 𝑅2, RMSE, and MAE are displayed at the top left. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)

Table 2 

Quantitative comparisons of HMFusion on both CAVE and Sen2Chikusei datasets. The best is in bold, and the second best is 

underlined.

Method CAVE Sen2Chikusei

CC mPSNR mSSIM SAM ERGAS CC mPSNR mSSIM SAM ERGAS

Hysure 0.9812 28.5002 0.8363 14.9918 6.1543 0.9913 44.5993 0.9890 1.5827 2.2661

CNMF 0.9871 28.1390 0.9218 7.3881 4.7168 0.9911 42.2850 0.9868 1.5419 2.2430

FUSE 0.9308 26.6617 0.8242 16.5955 12.6208 0.9924 41.1262 0.9844 1.4366 2.0336

CSU 0.9535 21.8613 0.7974 11.0717 9.8701 0.9889 33.2866 0.9363 1.6667 2.6124

CSTF 0.9574 22.4697 0.6063 19.3558 18.9112 0.7569 25.7209 0.6252 14.3557 16.2700

NSSR 0.9900 24.0462 0.8764 4.1425 4.6079 0.9732 37.4768 0.9404 2.7805 3.2582

LTMR 0.9799 24.0876 0.8491 6.8334 6.4586 0.9582 35.8172 0.9277 3.2708 4.5296

GTNN 0.9814 25.5633 0.8661 6.4658 6.2032 0.9650 37.2165 0.9431 2.9060 4.0843

PSRT 0.9980 38.4869 0.9774 2.8702 1.9882 0.9852 43.3565 0.9923 1.7362 3.2720

MSST 0.9991 38.1230 0.9900 2.5685 1.3155 0.9856 43.3058 0.9945 1.7036 2.7657

SSRNET 0.9980 36.7293 0.9838 4.5126 2.0905 0.9890 44.8197 0.9958 1.4280 2.3605

Fusformer 0.9984 39.5142 0.9882 2.2666 1.7862 0.9910 48.7963 0.9954 1.4013 2.4323

PNXnet 0.9981 38.4713 0.9798 3.4012 1.9742 0.9928 46.6941 0.9973 1.1841 1.8197

TFMamba 0.9978 36.9468 0.9836 3.2017 2.3183 0.9928 46.7363 0.9973 1.1806 1.8151

SpaXFus 0.9997 39.4677 0.9939 1.8645 0.7663 0.9942 48.6815 0.9977 1.0486 1.6025

criteria. These results validate SpaXFus as an effective and reliable 

method for the HMFusion task.

5.6.2 . Validation through fine-grained image classification

Hyperspectral images provide detailed spectral information that aids 

in recognizing ground objects that are difficult to distinguish. To analyze 

how much HMFusion methods can enhance spectral representation, this 

study uses fine-grained image classification as a downstream validation. 

The algorithm employed is the classical Support Vector Machine (SVM), 

using the Chikusei dataset with classification labels. The dataset includes 

19 classes, excluding the first class (water) in the selected study area, as 

shown in Fig. S2. In addition to common land cover classes, the study 

refines the classes of vegetation and bare soil, increasing classification 

difficulty.

Table S2 presents the fine-grained classification results with fused 

data, including OA, Kappa coefficient, and F1-score. Compared to clas­

sification using the original four-band Sen2 data, most fusion algorithms 

improve accuracy, except for CNMF and CSTF. Among traditional algo­

rithms, CSU is most beneficial, while deep learning-based algorithms 

all significantly improve accuracy. TFMamba and SpaXFus, which 

consider internal dependencies of hyperspectral data, show substantial 
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Fig. 8. Visualization comparisons of HMFusion on CAVE dataset.

Fig. 9. Reflectances of “Peppers” images from the CAVE data set at the fake and real pepper locations. (a) Reflectances of results at the real pepper location. 

(b) Locations of samples for real and fake peppers. (c) Reflectances of results at the fake pepper location.

advantages. SpaXFus achieves the best F1-score and OA, indicating its 

superior integration of hyperspectral information.

Fig. 10 shows confusion matrices of classification, where the horizon­

tal axis represents GT classes, and the vertical axis represents predicted 

classes. The darker the box, the higher the percentage, showing the pro­

portion of GT samples classified into each class. Nearly all algorithms 

struggle with artificial grass classification (class 16), and CSTF fails to 

predict the first seven classes. However, Fusformer and SpaXFus perform 

well. For the challenging bare soil classes, SpaXFus shows significant 

advantages due to its ability to exploit X-intrinsic interaction, capturing 

spectral differences more effectively.

Visual comparisons in Fig. S2 show that CSTF suffers from poor ac­

curacy due to its grid effect. In the zoomed-in region, high-brightness 

interference degrades the spectral information of the blue house in 

the original multispectral data, making it unrecognizable. MSST and 

SSRNET misclassify the blue house. Traditional algorithms generally 

fail to distinguish plastic houses from white roofs, except for FUSE, 

NSSR, and LTMR. Deep learning-based algorithms help identify white 

houses, and SpaXFus shows the closest match to the GT, supporting the 

quantitative evaluation.

5.7 . Spatio-temporal fusion

STFusion can generate the HR data for different time points us­

ing existing data, which is crucial for monitoring land cover changes. 

To validate the authenticity of the temporal information generated 

by STFusion algorithms, we use change detection as a downstream 

application.

5.7.1 . Comparisons on STFusion

The experimental results of the spatio-temporal fusion task on both 

the Land4Mod and Sen2Pla datasets are shown in Table 3. Traditional 

algorithms, such as STARFM, FSDAF, and Fit-FC, demonstrate lower per­

formance across the evaluation metrics, especially on Sen2Pla dataset. 

Specifically, Fit-FC exhibits a lower CC value and higher ERGAS on both 

datasets, indicating its limited capability for accurate STFusion.

Among the deep learning-based methods, MUSTFN and ECPW-STFN 

stand out, with MUSTFN achieving high CC, mPSNR, and mSSIM on the 

Land4Mod dataset. However, SpaXFus outperforms all methods, achiev­

ing the best performance across almost all metrics on both the Land4Mod 

and Sen2Pla datasets. On the Land4Mod dataset, SpaXFus achieves the 

best CC, mPSNR, mSSIM, ERGAS, and especially the lowest SAM values, 

demonstrating its superiority in STFusion.

Furthermore, when visually compared on the Land4Mod dataset, as 

shown in Fig. 11, SpaXFus provides noticeably sharper and more de­

tailed fusion results, preserving spatial and spectral features with higher 

clarity and accuracy. Other deep learning-based methods show blurring, 

while traditional methods show spectral distortion.

5.7.2 . Validation through change detection

Given that DynamicEarthNet contains land cover across various time 

points, we chose the Sen2Pla dataset for change detection (Toker et al., 
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Fig. 10. Visualization of the confusion matrices for refined classification results based on the fused outputs from the Sen2Chikusei dataset. Rows represent the 

predicted labels, while columns denote the GT labels. The percentages within the matrix indicate the proportion of GT samples classified into each specific class, 

with only values exceeding 1 % being displayed. Classes 1 to 18 correspond to: Bare Soil (school), Bare Soil (park), Bare Soil (farmland), Natural Plants, Weeds in 

Farmland, Forest, Grass, Rice Field (grown), Rice Field (1st stage), Row Crops, Plastic House, Manmade (non-dark), Manmade (dark), Manmade (blue), Manmade 

(red), Manmade (grass), Asphalt, and Paved Ground, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)

Table 3 

Quantitative comparisons of spatio-temporal fusion on both Land4Mod (Li et al., 2020a) and Sen2Pla datasets. The best is in bold, 

and the second best is underlined.

Method Land4Mod Sen2Pla

CC mPSNR mSSIM SAM ERGAS CC mPSNR mSSIM SAM ERGAS

STARFM 0.6089 29.7540 0.7177 4.2705 2.1178 0.3591 18.7404 0.7974 4.6189 20.9687

FSDAF 0.5874 29.2198 0.7579 4.3049 2.1601 0.3575 18.4040 0.7677 4.6675 21.0242

Fit-FC 0.4699 30.3249 0.8134 5.7226 3.4078 0.3272 23.5089 0.6836 8.0819 25.1615

STTFN 0.6042 27.0005 0.8326 5.7647 2.0684 0.6773 20.1320 0.8884 6.0790 17.3575

MUSTFN 0.7220 32.4079 0.8783 4.1098 1.0800 0.5127 20.4120 0.7383 5.8042 24.4401

ECPW-STFN 0.6148 29.1293 0.8469 5.4524 1.5184 0.7228 20.7511 0.9121 9.1036 14.4571

TFMamba 0.5843 30.1196 0.8532 4.7120 1.3726 0.6191 19.0777 0.8428 4.0303 26.2831

SpaXFus 0.7898 34.1518 0.9018 3.3192 0.8489 0.9029 23.6275 0.9061 2.3893 15.0765

2022). ChangeStar2 is used as the change detection method (Zheng 

et al., 2024). The change detection results are shown in Fig. S3, which 

presents land cover classifications at two time points and the ground 

truth (GT) for change detection. Change detection result of the original 

LR Sen2 image pair is shown in Fig. S3d. Due to the low resolution, it 

is difficult to extract meaningful semantic information, resulting in poor 

detection. Among the traditional algorithms, Fit-FC performs well and 

detects almost all changes. In deep learning algorithms, the results for 

large-scale changes are generally good. TFMamba and SpaXFus, which 

account for global dependencies, perform better. The proposed SpaXFus 

method yields the best results.

For a more accurate comparison, Table S1 presents the quantita­

tive results of change detection, including IoU, Precision, Recall, and F1 

score. The original Sentinel-2 data struggles to provide accurate seman­

tic information, resulting in poor change detection performance. Fit-FC 

achieves the highest Recall, but its low Precision indicates significant 

false positives. TFMamba has the highest Precision but a low Recall, 

leading to substantial false negatives. Both algorithms have relatively 

low F1 scores. In contrast, the detection results based on SpaXFus fusion 

data achieve the highest IoU and F1 score, maintaining a good balance 

between Precision and Recall, indicating minimal false positives and 

false negatives. This also suggests that the spatio-temporal information 

integrated by SpaXFus is more reliable. 

5.8 . PolSAR fusion

PolSAR fusion can generate high spatial resolution fully-polarimetric 

SAR images, which contain rich polarimetric and scattering informa­

tion, providing data for more accurate surface detection. To assess the 

reliability of the fused polarimetric information, this study introduces 

vegetation extraction as the downstream application for PolSAR fusion.

5.8.1 . Comparisons on PolSAR fusion

The results of quantitative comparisons, presented in Table 4, 

demonstrate the effectiveness of SpaXFus in comparison with several 

traditional and deep learning-based methods. Bicubic and SRPSC, as tra­

ditional methods, exhibit relatively high errors in terms of MAE, RMSE, 
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Fig. 11. Visualization comparisons of STFusion on Land4Mod dataset.

Table 4 

Quantitative comparisons of PolSAR fusion on both San Francisco and Quebec areas. The best is in bold, and the second best is underlined.

Method San Francisco Quebec

MAE RMSE SAM mPSNR ERGAS 𝑑𝑅 MAE RMSE SAM mPSNR ERGAS 𝑑𝑅

Bicubic 0.0738 0.6077 4.4669 41.9463 44.1183 0.9240 0.1260 1.3416 10.7310 48.4529 54.1829 1.3978

SRPSC 0.0940 0.7326 6.0815 40.6827 51.2048 1.0853 0.1259 1.3637 10.9392 48.5932 54.6830 1.4028

MSSR 0.0733 0.5909 3.4067 41.8994 43.2933 0.6717 0.1280 1.3629 9.9977 47.6770 55.4798 1.4489

PSSR 0.0767 0.5993 5.9913 42.0909 49.0304 0.9416 0.1296 1.3071 12.8065 50.5043 50.3007 1.5961

MSPSRN 0.0739 0.5948 4.0591 42.2034 48.9310 0.8030 0.1161 1.2866 10.3558 49.7582 56.9625 1.5279

PSFN 0.0237 0.2002 3.9764 48.1620 9.3040 0.9624 0.0509 0.8120 11.1725 48.3388 33.2591 1.1419

FDFNet 0.0197 0.1768 3.3050 48.3027 7.7423 0.5520 0.0425 0.8126 7.4615 48.2313 31.6319 0.7646

SpaXFus 0.0153 0.1824 3.2403 48.4783 7.7101 0.5139 0.0416 0.7963 7.3214 48.8016 30.9526 0.7520

Fig. 12. PolSAR fusion results on Quebec dataset.

and SAM, particularly on the Quebec dataset, which is a real-world 

dataset. Deep learning-based methods, such as MSSR, PSSR, MSPSRN, 

PSFN, and FDFNet, show significant improvements, especially in terms 

of MAE and SAM, compared to the traditional methods.

In particular, SpaXFus outperforms all other methods across almost 

all evaluation metrics, including MAE, RMSE, SAM, mPSNR, and ERGAS, 

on both San Francisco and Quebec datasets. For example, on the Quebec 

dataset, SpaXFus achieves the lowest MAE and RMSE, indicating its 

superior ability to preserve fine details in the fused PolSAR images. 

Moreover, SpaXFus delivers the highest mPSNR and the lowest ERGAS, 

demonstrating its effectiveness in generating high-quality fused images 

that better match the real-world data. The 𝑑𝑅 metric, which evaluates 
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the preservation of polarimetric information, also confirms the supe­

riority of SpaXFus. On both the San Francisco and Quebec datasets, 

SpaXFus achieves the best 𝑑𝑅 score, with values of 0.5139 and 0.7520, 

respectively, outperforming all other methods.

On the Quebec dataset, the visual results shown in Fig. 12 are con­

sistent with the quantitative analysis, where SpaXFus produces more 

accurate and clearer images compared to other methods. The visual com­

parison reveals that SpaXFus is able to preserve key features, such as 

vegetation, buildings, and roads, much better than the competing meth­

ods. This is particularly evident in the finer details of the high-resolution 

fused images generated by SpaXFus versus those generated by meth­

ods like Bicubic or SRPSC, which tend to introduce more blurring and 

artifacts. This highlights SpaXFus as a promising method for PolSAR im­

age processing and related remote sensing applications, especially in 

practical, real-world scenarios.

5.8.2 . Validation through SAR vegetation extraction

Fig. S4 presents the results of vegetation extraction on HR PolSAR 

data generated by various fusion algorithms using the SVM algorithm. 

Observing the results from SinSAR, it can be seen that vegetation ex­

traction from SAR requires multi-polarimetric scattering information to 

effectively differentiate vegetation from other land covers. When using 

PolSAR data, even simple Bicubic interpolation can extract the general 

vegetation, although there are still many false positives. Several super-

resolution-based algorithms produce fragmented results with more false 

positives, while fusion-based algorithms yield results more similar to GT, 

particularly in the elongated region in the top-left corner, which is dis­

tinguished from the vegetation. Overall, the results from MSPSRN and 

SpaXFus are the best.

Table S3 presents the quantitative results of vegetation extraction, 

including Producer’s Accuracy (PA), User’s Accuracy (UA), and IoU. 

SinSAR-based results have high PA due to numerous false positives, 

nearly identifying all land covers as vegetation, which leads to low UA 

and IoU. SpaXFus achieves the highest UA, and its PA is the highest 

among all fusion algorithms, resulting in the highest IoU. This indicates 

that the polarimetric information fused by the proposed SpaXFus is more 

reliable and avoids distortion.

6 . Conclusions

In this study, we summarize four existing remote sensing image 

fusion problems involving spatial degradation into a broader concept 

generalized spatial-channel fusion, termed spatial-X fusion. To address 

this, we propose a universal framework, SpaXFus, which integrates a 

model-driven unfolding framework with spatial-X intrinsic interaction. 

By leveraging degradation models, the algorithm demonstrates strong 

generalization capabilities while effectively capturing mutual depen­

dencies and self-interactions in both the spatial and X domains. This 

results in broader applicability and superior performance in generalized 

spatial-channel fusion. Experimental results across multiple datasets 

and four different fusion tasks highlight the superiority of SpaXFus. 

Additionally, we build a benchmark where downstream applications are 

introduced to assess the effectiveness of the fused information. While 

the proposed method shows promising results, its dependency on data 

remains a limitation. SpaXFus must be retrained for each distinct task. 

Future work should focus on developing a spatial-channel fusion foun­

dation model for few-shot or even zero-shot scenarios. Moreover, as this 

study indicates that fusion benefits downstream applications, achieving 

multi-level and multi-task collaboration will advance remote sensing 

image intelligent processing and understanding. Codes are released at 

https://github.com/zhu-xlab/SpaXFus.
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