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ARTICLE INFO ABSTRACT

Keywords: Accurate pan-sharpening of multispectral images is essential for high-resolution remote sensing, yet supervised
Pan-sharpening methods are limited by the need for paired training data and poor generalization. Existing unsupervised
Degradation model

approaches often neglect the physical consistency between degradation and fusion and lack sufficient
constraints, resulting in suboptimal performance in complex scenarios. We propose RevFus, a novel two-
stage pan-sharpening framework. In the first stage, an invertible neural network models the degradation
process and reverses it for fusion with cycle-consistency self-learning, ensuring a physically grounded mapping.
In the second stage, structural detail compensation and spatial-spectral contrastive learning alleviate detail
loss and enhance spectral-spatial fidelity. To further understand the network’s decision-making, we design
a quantitative and systematic measure of model interpretability, the Interpretability Efficacy Coefficient
(IEC). IEC integrates multiple statistics derived from SHapley Additive exPlanations (SHAP) values into a
single unified score and try to evaluate how effectively a model balances spatial detail enhancement with
spectral preservation. Experiments on three datasets demonstrate that RevFus outperforms state-of-the-art
unsupervised and traditional methods, delivering superior spectral fidelity, enhanced spatial detail, and high
model interpretability, thereby validating the effectiveness of the interpretable deep learning framework for
robust, high-quality pan-sharpening.

Unsupervised fusion
Model interpretability
Self-learning
Contrastive learning

1. Introduction spatial details, although spectral fidelity may be compromised. Mean-
while, MRA-based methods are considered to better preserve spectral
information, but their spatial details are generally less sharp.

While these methods offer high computational efficiency, they of-
ten struggle to balance spatial detail preservation with spectral fi-

delity in complex scenarios, frequently resulting in significant spectral

Pan-sharpening is an efficient remote sensing image processing
technique that fuses spectral information from different data sources to
obtain high spatial resolution multispectral images. It mainly combines
the high spatial resolution (HR) details of panchromatic (PAN) images
with the rich spectral information of low spatial resolution (LR) multi-
spectral (MS) images. This technique provides higher-quality data for
numerous remote sensing applications (Liu et al., 2025), including land
cover classification (Yang et al., 2025), urban monitoring (Chen et al.,

distortions. To address these limitations, more advanced techniques
have emerged, leveraging sparse representation and optimization-based
frameworks. Representative approaches include P+ XS (Ballester et al.,

2025), agricultural assessment (Xia et al., 2023), and environmental
management (Eugenio et al., 2014).

According to information and feature processing, traditional pan-
sharpening methods can be categorized to three groups: Component
substitution-based methods (Carper et al., 1990; Gillespie et al., 1987;
Kwarteng and Chavez, 1989; Laben and Brower, 2000), Multi-
resolution analysis-based methods (Burt and Adelson, 1987; Nason
and Silverman, 1995; Starck et al., 2002; Do and Vetterli, 2005) and
Hybrid methods (Gonzalez-Audicana et al., 2004; Otazu et al., 2005;
Javan et al., 2021). CS-based methods are considered to provide rich

2006), Total Variation (TV) regularization (Palsson et al., 2013), the
1), gradient prior (Zeng et al., 2016), filter estimation techniques
(Vivone et al., 2014), and local gradient constraint-based fusion (Fu
et al., 2019). Although these methods offer enhanced modeling flexi-
bility and stronger representational capabilities, they typically depend
on strict assumptions and pre-specified degradation models, which can
restrict their general applicability and necessitate careful adjustment
of hyper-parameters. As a result, their applicability to multi-sensor
environments and large-scale remote sensing tasks remains constrained.
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In recent years, with the rapid advancement of deep learning,
directly learning the mapping between low- and high-spatial reso-
lution information has emerged as a prominent approach for pan-
sharpening. In particular, supervised convolutional neural network
(CNN)-based methods have demonstrated remarkable performance in
this task (Zhong et al., 2016; Rao et al., 2017; Wu et al., 2023, 2025).
For instance, Masi et al. (2016) formulates pan-sharpening as an image
super-resolution problem and addresses it using a three-layer CNN
(PNN). To construct deeper networks and improve learning capacity,
residual learning was introduced by Shao and Cai (2018), while Wei
et al. (2017) proposed global residual skip connections to better main-
tain spatial details. Building on these strategies, Yang et al. (2017)
incorporated high-pass filtering to facilitate the extraction of high-
frequency components. To further boost CNN modeling capabilities, a
range of techniques has been explored, including adaptive weighting
schemes (Liu et al., 2020a), pyramid network architectures (Zhang
et al., 2019), gradient priors (Zhang and Ma, 2021), two-stream net-
works (Liu et al., 2020c), deep unrolling approaches (He et al., 2022),
generative adversarial networks (GANs) (Liu et al., 2020b; Gastineau
et al., 2021), and diffusion-based models (Zhong et al., 2024). Through
end-to-end training, these networks can directly learn fusion mappings
from paired LR and HR images, achieving substantially higher perfor-
mance than traditional methods (Deng et al., 2022). Nevertheless, such
approaches are highly dependent on high-quality real-world training
data, which are often unavailable in practical scenarios.

To alleviate the dependency on ground truth data, a range of unsu-
pervised pan-sharpening methods have been proposed (Li et al., 2021;
Zhou et al., 2020). These methods typically simulate the degradation
process or incorporate adversarial mechanisms to learn the fusion
mapping, thereby offering greater practicality. Nevertheless, existing
unsupervised approaches generally overlook the physical consistency
between the degradation and fusion processes. Most of them optimize
solely based on reconstruction errors, which limits the model’s ability
to accurately capture the true mapping between LR and HR domains,
leading to poor performance in complex scenarios.

To address the limitations of existing unsupervised pan-sharpening
methods, this paper presents a novel framework, Reverse degrada-
tion for Fusion (RevFus). RevFus is built upon an Invertible Neural
Network comprising multiple Invertible Spatial-Spectral Degradation
Blocks (ISSDB), enabling bidirectional mapping between high-quality
MS images and degraded spectral and spatial domains. Rather than
directly learning a fusion mapping, we first explicitly model the degra-
dation process and then reverse it to perform fusion, which is termed
degradation-to-fusion learning. This approach thus provides a more
interpretable and physically grounded fusion process compared to con-
ventional methods. To further enhance training stability and fidelity in
degradation-to-fusion learning, we introduce a cycle-consistency self-
learning (CCSL) objective, which enforces consistency between the
degradation and fusion processes.

Although degradation-to-fusion learning enhance the stability and
fidelity of unsupervised pan-sharpening, a spatial detail compensation
stage is further designed in this paper to enhance the spatial details
of the initial fused image. Building upon the initial fusion results, this
stage aligns with the PAN image through the degradation in the spectral
branch, and subsequently reprojects the missing spatial details into
the MS domain using spectral transformation. Moreover, to enhance
the collaborative modeling of spatial and spectral information, we
introduce a spatial-spectral contrastive learning objective. Unlike tradi-
tional contrastive learning approaches that focus on feature alignment
within a single modality (Khosla et al., 2020), our method considers
improvement in both two domains, thereby enabling higher-quality
fusion feature alignment.

While these strategies improve the visual quality and fidelity of the
fused images, deep learning-based pan-sharpening models still suffer
from a lack of interpretability. Their internal feature extraction and
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fusion mechanisms remain largely hidden, making it difficult to un-
derstand how the network balances spatial detail enhancement with
spectral preservation. To address this, we propose a quantitative and
systematic measure of model interpretability, the Interpretability Ef-
ficacy Coefficient (IEC). The IEC integrates multiple statistics derived
from SHapley Additive exPlanations (SHAP) values, such as mean in-
fluence, standard deviation, top-3 feature focus, and influence entropy,
into a single unified score. By combining concepts from information
theory, statistical mechanics, and signal processing, IEC provides a
quantitative measure of model interpretability.
The main contributions of this work are summarized as follows:

We propose a novel unsupervised pan-sharpening framework
based on invertible networks and cycle-consistency self-learning,
termed degradation-to-fusion learning, which first models the
degradation and then reverses it to achieve image fusion.

A structural detail compensation stage is designed to further
enhance spatial detail representation.

A spatial-spectral contrastive learning objective is proposed to
improve alignment of spatial and spectral features with high-
quality references, ensuring effective integration of spatial and
spectral information.

A composite metric called interpretability efficacy coefficient is
proposed to quantitatively measure the model interpretability of
deep learning-based pan-sharpening models.

The remainder of this paper is organized as follows. Section 2
reviews the related work. The framework and methodological details
are presented in Section 3. Section 4 reports experimental results on
three datasets to validate the effectiveness of the proposed model and
analyzes the proposed IEC. Finally, Section 5 concludes the paper.

2. Related works
2.1. Unsupervised pan-sharpening

Unsupervised pan-sharpening has attracted considerable attention,
with numerous methods proposed to address the challenge of fusing
high-resolution panchromatic (PAN) images and low-resolution multi-
spectral (MS) images without relying on ground truth data. A promi-
nent line of research explores the application of generative adversarial
networks (GANSs) in this area (Li et al., 2021; Zhou et al., 2020). For in-
stance, Ma et al. (2020) introduced a dual-discriminator framework de-
signed to enforce spatial and spectral fidelity separately. Ozcelik et al.
(2020) leveraged reduced-resolution MS images processed via grayscale
conversion and spatial downsampling to train their GAN. Zhou et al.
(2021) developed a two-stream generator combined with dual dis-
criminators and incorporated a cycle-consistency-based hybrid loss to
enhance reconstruction quality (Zhou et al., 2022). Xu et al. (2023)
proposed treating pan-sharpening as a two-stage fusion process by
introducing an intermediate resolution scale to bridge the gap between
PAN and MS images. Although GAN-based approaches are effective in
scenarios lacking ground truth, they tend to generate new image con-
tent rather than strictly fuse existing spectral and spatial information,
which can lead to undesirable artifacts.

Beyond GANSs, other studies focus on refining loss functions and
imposing stronger constraints to improve fusion quality (Liu et al.,
2023; He et al., 2023). Luo et al. (2020) designed a novel loss formu-
lation utilizing input MS and PAN images to simultaneously enhance
spatial details and maintain spectral consistency. Ciotola et al. (2022a)
further proposed a target-adaptive operating mode to adapt the net-
work behavior dynamically. Qu et al. (2020) introduced a self-attention
mechanism combined with sparse constraints and detail reconstruction
loss, achieving improved unsupervised pan-sharpening performance. Ni
et al. (2022) modeled degradation processes through multiple CNN
blocks, strengthening the fusion constraints.
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Additionally, some approaches integrate prior domain knowledge
into the unsupervised learning framework. Seo et al. (2020) com-
bined unsupervised learning with implicit registration techniques to
better align PAN and MS images. Wang et al. (2022) employed meta-
learning strategies to adapt supervised models for unsupervised scenar-
ios. Uezato et al. (2020) introduced a guided deep decoder network
aimed at refining features between PAN and multispectral domains,
further improving fusion outcomes.

2.2. Contrastive learning

Contrastive learning has become one of the most influential self-
supervised learning frameworks in recent years. Its fundamental goal is
to learn feature representations by pulling together semantically similar
samples (positive pairs) while pushing apart dissimilar ones (negative
pairs) in the embedding space (Jaiswal et al., 2020). Early contrastive
methods demonstrated remarkable performance in computer vision by
leveraging large batch sizes and memory banks to construct effective
positive and negative pairs. SimCLR (Chen et al., 2020) emphasized the
importance of strong data augmentations and large batch sizes, whereas
MoCo (He et al., 2020) introduced a momentum encoder to maintain
a dynamic dictionary of negative samples, enabling effective training
with smaller batches.

Beyond these, newer frameworks have relaxed the reliance on neg-
ative pairs. Methods like BYOL (Grill et al., 2020) and SimSiam (Chen
and He, 2021) successfully learned meaningful representations with-
out explicit negatives by using asymmetric network architectures and
stop-gradient techniques to prevent collapse. Furthermore, advance-
ments include the incorporation of hard negative mining (Kalantidis
et al., 2020), multi-view contrastive learning (Tian et al., 2020), and
multi-modal contrastive frameworks (Radford et al., 2021).

Contrastive learning has been widely adopted across various do-
mains beyond natural images, including medical imaging, speech pro-
cessing, and remote sensing. In particular, its ability to learn from unla-
beled data makes it well-suited for fields where annotation is expensive
or impractical. The surveyed literature also highlights theoretical in-
sights into the relationships between contrastive loss functions, mutual
information estimation, and downstream task performance (Tschannen
et al., 2019).

2.3. Model interpretability

Growing requirements for trust, transparency, and controllability in
satellite imagery processing have driven significant interest in model
interpretability. These approaches are broadly categorized into four
groups: Feature Attribution, Model Distillation, Intrinsic Interpretabil-
ity, and Contrastive Examples (Hohl et al., 2024).

Feature Attribution methods include backpropagation-based and
perturbation-based approaches, both aiming to reveal which input
features most influence model predictions. Backpropagation methods
exploit model internals, such as gradient maps or Integrated Gra-
dients (Sundararajan et al., 2017), while Grad-CAM produces class-
specific heatmaps for CNNs (Selvaraju et al., 2017). In contrast, pertur-
bation methods modify inputs to measure changes in predictions (Fisher
et al.,, 2019). The key difference lies in their reliance on the model:
backpropagation uses internal information, whereas perturbation treats
the model as a black box.

Building on feature-level explanations, model distillation techniques
seek to approximate complex models with interpretable surrogates.
Local distillation methods focus on individual predictions, using ap-
proaches such as LIME (Cheng et al., 2022) or Deep SHapley Additive
exPlanations (SHAP) (Temenos et al., 2023). In contrast, model trans-
lation creates global surrogates, often with decision trees or rule-based
models, to provide overall interpretability across the dataset (Augasta
and Kathirvalavakumar, 2012). Together, these methods complement
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feature attribution by offering explanations at both local and global
levels.

Intrinsic Interpretability takes a different approach by designing
models or analyzing latent spaces to be inherently understandable.
Interpretable-by-design models allow direct inspection of decision rules
or coefficients (Guo et al., 2023). Latent-space methods interpret hid-
den activations using attention mechanisms (Khan et al., 2024) or
concept-based approaches, providing insight into deep model repre-
sentations. Joint training strategies, such as concept bottleneck models
or ProtoPNet (Barnes et al., 2022), integrate auxiliary tasks to align
latent representations with human-understandable concepts, bridging
local and global interpretability.

Contrastive Examples explain model behavior by comparison with
alternative instances. Counterfactual methods identify minimal changes
required to alter predictions (Dantas et al., 2023), while example-
based approaches retrieve similar historical instances (Ishikawa et al.,
2023). The distinction is that counterfactuals generate artificial cases,
whereas example-based methods rely on real instances. By providing in-
tuitive comparisons, these approaches complement other interpretabil-
ity methods and offer human-aligned reasoning.

3. Methodology

In this study, we propose a unsupervised fusion method called Rev-
Fus, which consists of two main stages: degradation-to-fusion learning
and structural detail compensation. In the first stage, the original MSI is
degraded into a LR MSI and a LR PAN image, which are then processed
in reverse by RevFus to reconstruct the estimation of original MSI,
with CCSL enforcing reconstruction fidelity. Thus, the information in
the original data is exploited to initialize the network of Revfus. In
the second stage, the parameters of RevFus are frozen. The initial
fusion output is degraded into the PAN spectral domain in alignment-
based detail reprojection, and missing spatial details are compensated
using spectral alignment. Finally, S? contrastive learning is proposed to
improve both spatial and spectral fidelity. Details are shown in Fig. 1.
Furthermore, to measure the model interpretability comprehensively, a
new index named IEC is proposed.

3.1. Problem formulations

Let X € RW*HXC denote the ideal HRMS image, where C represents
the band number, and W and H are the spatial dimensions. The PAN
image is denoted as P € R"*#*! which shares the same spatial resolu-
tion as X but contains only a single spectral channel. The corresponding
LRMS image is denoted by M € RW*"*C where W /w = H /h = r, with
r being the scale factor between the HR and LR images. Typically, it is
4 in pan-sharpening tasks.

In real-world remote sensing scenarios, due to the inherent limita-
tions of imaging sensors, the observed data consists of the spatially
degraded multispectral image M and the spectrally degraded PAN
image P, instead of the ideal HRMS image X. These degradation
processes can be mathematically formulated as:

P=Xo @

M = DX (2)

where @ € R¥! is the spectral response functions of the PAN sensor,
and D € RWWXWxH) ig the spatial degradation operator applied to X
to generate the LRMS image.

Based on the formulations in Egs. (1) and (2), the pan-sharpening
task can be regarded as a typical inverse problem: reconstructing the
HR multispectral image X from its spatially and spectrally degraded
counterparts M and P. In deep learning-based approaches, this inverse
mapping is generally learned through a model %(-), which directly
estimates the HRMS output from the degraded inputs:

X =F(M,P) 3)

where X denotes the reconstructed HR multispectral image.
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Fig. 1. Overview of the proposed RevFus framework.

3.2. Degradation-to-fusion learning

Most existing unsupervised fusion frameworks treat the pan-sharp-
ening problem as a generation task with prior constraints and address
it using generative algorithms. The advantage of this approach lies
in leveraging large-scale existing samples to build a knowledge base,
thereby enhancing the model’s generalization capability in complex
scenarios. However, this strategy overlooks that pan-sharpening fun-
damentally represents the inverse problem of the degradation process
in remote sensing imaging. Consequently, generative algorithms may
introduce artificial spectral information or spatial details, which signifi-
cantly undermines the reliability of remote sensing images as physically
meaningful data sources.

In this work, we exploit the unique bidirectional inference capa-
bility of invertible neural networks to propose a method grounded
in the degradation mechanism of the imaging process. Our approach
simultaneously learns both spatial and spectral degradation processes
using the existing multispectral data itself. During this stage, spatial
and spectral degradations are learned at a coarser scale, which reduces
memory consumption and accelerates training. After the RevFus model
f(-) is trained to convergence, we obtain two types of degraded obser-
vations derived from the original multispectral image M. Specifically,
the model estimates a spatially degraded M, as well as a spectrally
degraded version M j, where M j preserves the same spatial dimensions
as the original image M:
M, M} = f(M) “4)

Leveraging the near-lossless reversibility of invertible neural net-
works, when the multispectral image M and the panchromatic image
P are fed backward into the model, the fused result F, can be obtained.

F=f"'(M,P) (5)

where F, denotes the initial fused results and f~!(-) represents the
reverse process of RevFus. To enable the model to achieve reversibility
while learning the degradation process, we not only propose invert-
ible spatial-spectral degradation blocks and invertible Haar wavelet
sampler, but also introduce cycle-consistency self-learning.

3.2.1. Network architecture of RevFus

Considering that directly performing a one-step up- and down-
sampling would introduce a large information gap, complicating
spatial-spectral alignment and fusion, the proposed RevFus adopts a
multi-scale architecture. At each scale, the data is up- or down-sampled
by a ratio of two. Feature extraction at different scales incorporates
multiple invertible spatial-spectral degradation blocks, as illustrated in
the first step of Fig. 1.

Most existing methods typically rely on simple interpolation or
deconvolution to change image scales. However, these operations are
generally non-invertible, and some, such as pixelshuffle, achieve only
approximate invertibility while still incurring information loss. Inspired
by traditional multi-resolution analysis-based pan-sharpening methods,
RevFus employs an invertible wavelet-based approach, termed the Haar
wavelet sampler, to achieve lossless up- and down-sampling. The Haar
wavelet transform, one of the simplest and most classical discrete
wavelet transforms, decomposes an image into four approximation
components with different frequencies (LL, LH, HL, HH) using simple
addition and subtraction. Since the transformation relies solely on lin-
ear and invertible operations, it is inherently lossless and can perfectly
reconstruct the original data via the inverse transform (King and Wang,
2001).

This multi-resolution decomposition can be represented as a set
of fixed 2 x 2 convolution kernels that decompose the input image
into a low-frequency component and three high-frequency components.
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Specifically, the Haar wavelet decomposition kernels are defined as:
-1 -1
) ©

Ky = % [_; i] » Kpp = % [_11 11] . )

Since these operations correspond to orthogonal transformations,
they are fully invertible. The inverse transform simply convolves the
sub-bands with the corresponding kernels and sums them to recover
the original image. This convolutional implementation of the wavelet
sampler can be integrated into CNNs, enabling RevFus to achieve
truly lossless and invertible information propagation. Compared to
traditional interpolation, Haar wavelet up- and down-sampling not
only guarantees invertibility but also explicitly separates structural
and detailed features, providing cleaner and more complementary rep-
resentations for subsequent spatial-spectral fusion. The down- and
up-sampling process of Haar wavelet sampler are shown in Fig. 2.
Cause the typical resolution ratio in pan-sharpening is four, RevFus
employs two cascaded Haar wavelet samplers to progressively match
resolutions.

In RevFus, feature extraction and fusion at each scale are composed
of multiple invertible spatial-spectral degradation blocks, as shown in
Fig. 3. The key concept is to divide the input feature evenly along
the channel dimension, resulting in two parts, (x,x,), and perform a
sequence of invertible transformations to enable bidirectional informa-
tion flow and reconstruction. The forward propagation is formulated
as:

N =

1|11 1
KLL_E[l 1], Kin =

yi=x O exp(Scaling(E(xz))) + F(x,),

. ®
¥, = x, @ exp(Scaling(G(y))) + H(y,)

where Scaling(x) = 2-6(x)—1 denotes the scaling operation, which maps
the output of the Sigmoid function o(-) from the range [0, 1] to [-1,1].
E,F,G, H are nonlinear mappings implemented using DenseBlocks ().

Since the scaling operations are exponential, the Jacobian determi-
nant of the transformation can be expressed as:

det J = exp(z Scaling(E(x,)) + Y, Scaling(G(y, ))) >0 ©)

which is strictly positive, ensuring the transformation is mathematically
invertible. Leveraging this property, the transformation can be exactly
reversed as:
X = (v = H(y)))/ exp(scaling(G(y))),
X = (y) = F(x,))/ exp(scaling(E(x,)))
This design ensures that each block preserves information in both
forward and backward directions, minimizing redundancy loss in
spatial-spectral fusion and enhancing the invertibility and stability of
the reconstructed images.

(10

3.2.2. Optimization objective

In the Degradation-to-Fusion Learning stage, our goal is to ac-
curately model the image degradation process and, combined with
the nearly lossless inverse propagation of invertible neural networks,
achieve a natural transition from degradation learning to fusion learn-
ing. In this stage, how to use the information in the original MS image
to learn the spatial and spectral degradation is crucial. Therefore, we
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propose a coarse-scale self-supervised learning (CSSL) strategy that
uses the features of the original MS and PAN images at the coarse
scale to simulate the degradation process, thereby using the original
MS information as the target to accurately learn the spatial-spectral
degradation. The corresponding loss function is defined as follows:

Ecs = ﬂj ‘C/l + ﬂs ‘Cs an
L, =m; - Pl 12
L, =M - M3, 13)

Here, Lcs represents the coarse-scale self-supervised loss, which is
composed of a spectral consistency term £, and a spatial consistency
term L. The spectral component enforces that the predicted degraded
image M j remains consistent with the spectrally-degraded MS image
M j, as well as with the spatially-degraded PAN image P;. The spatial
component, on the other hand, ensures that the spatial details of the
predicted degraded MS image M 5 are well preserved with respect to
the reference degraded MS image M. The two terms are weighted by
coefficients g4 and g, to control their relative influence.

To further improve the model fidelity of the proposed RevFus,
we introduce a cycle-consistency self-learning strategy. Specifically,
in the forward degradation process, RevFus takes the original MS
image as input and generates the degraded MS image and the PAN
image. In the backward fusion process, the network reconstructs a HR
fused MS image from the LR MS image with PAN data. The cycle-
consistency constraint feeds the forward-degraded outputs back into
the network in the backward direction to produce an estimate of the
original MS image, enforcing consistency between the reconstructed
and original MS images. This design encourages the network to learn a
nearly lossless mapping between the degradation and fusion processes,
thereby enhancing spectral and spatial fidelity, stabilizing the training
procedure, and effectively reducing artifacts in the reconstructed HR
MS images.

The corresponding cycle-consistency loss is formulated as:

Lo = I£71CF (M) = M, as

where f(-) denotes the forward degradation process, f~!(-) denotes the
backward fusion process, and || - ||, measures the L, distance between
the reconstructed and original MS images. This loss explicitly enforces
that the network’s forward and backward mappings are consistent.

Overall, the optimization objective in the Degradation-to-Fusion
Learning stage consists of two components: a coarse-scale self-super-
vised loss and a cycle-consistency self-learning constraint. These two
terms are balanced using weighting coefficients a« and g:

‘CDZF = a[’cc + ﬂﬁcs (15)

3.3. Structural detail compensation

Compared with supervised pan-sharpening methods, the main chal-
lenge of unsupervised pan-sharpening lies in the absence of high-
resolution reference images to constrain the model learning. Without
sufficient supervision, the fused results often suffer from insufficient
spatial details. Although the proposed degradation-to-fusion learning
effectively models both the real degradation process and its inverse fu-
sion, the lack of HR multispectral ground truth still limits the recovery
of fine spatial structures.

To address this challenge, this paper proposes a further structural
detail compensation stage based on spectral alignment to restore the
spatial details lost during the Degradation-to-Fusion Learning stage.
Specifically, after training RevFus in degradation-to-fusion learning
stage and freezing its parameters, the MS and PAN images are first fed
into the fusion path of RevFus to generate an initial fused result F,.
Then, by applying the forward degradation process of RevFus to Fj,
P’ is obtained, which carries the spatial information embedded in F;
due to its spectral degradation origin. Next, a spectral alignment-based
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detail reprojection mechanism is applied to recover the spatial details
absent in F; but present in the original PAN, yielding F,. Finally, an
adaptive information injection module integrates F;, and F, to obtain
the final fused result X. Meanwhile a spatial-spectral contrastive learn-
ing scheme is adopted to further enhance spatial-spectral consistency
and detail preservation.

3.3.1. Alignment-based detail reprojection

In practice, the input PAN and MS images are not only different
in spatial resolution but also in spectral characteristics, making it
particularly challenging to simultaneously address both types of dis-
crepancies. To more effectively recover the missing details in Fj, it
is first transformed into PAN domain, while also accounting for the
intrinsic spectral relationship between the two sensors.

In RevFus, the spatial-spectral degradation process has already
been modeled during the degradation-to-fusion learning stage. Thus, its
forward degradation path can be exploited to project F, into the PAN
spectral space:

P = f\(F) 16)

Although P’ has been spectrally aligned, it still lacks the fine spatial
details contained in the original PAN image P. To address this, both P’
and P are input into an Adaptive Information Injection (AII) module
(see Fig. 4), which adaptively transfers the missing spatial information
from P to P’, resulting in an enhanced representation P:

P =All(P',P) = w, - Conv, (Conv,(P' — P)) + w, - P' a7

Here, w, and w, are learnable weights, while Conv, and Conv, are
3 X 3 convolution layers. These weights balance the contribution of
the original aligned features and the enhanced difference information
to construct P.

Through this reprojection mechanism, P’ is effectively supple-
mented with the spatial structures guided by the original PAN image.
The enhanced representation P is then mapped back into the MS
spectral domain using a spectral converter Fsc, yielding a spectrally
consistent yet spatially enriched representation F,:

F, =Fsc <I~’> (18)

Finally, after obtaining the spatially enhanced representation F,,
another AIl module is employed to adaptively integrate F, and F,,
leading to the final fused output:

X = All(F, F,) (19)

The final fused output X thus preserves spectral consistency while
restoring high-quality spatial details.

3.3.2. Spatial-spectral contrastive learning

To enhance the representational capacity of the fusion network,
we propose a spatial-spectral contrastive learning (S>CL) strategy that
jointly constrains the spectral consistency and spatial structure preser-
vation during training. As shown in Fig. 1, the framework integrates
both spectral representation contrast and spatial detail contrast under
a unified optimization objective, guided by a consistency constraint.

Given a fused image X, original MS image M, and PAN image P,
we first extract spectral representations using a spectral encoder:

Ef =&,X), Ej=¢&(M), E}) =§&(P) (20)

where &,(-) denotes the spectral feature extractor consists of two large-
kernel convolutional layers and a global average pooling layer, yielding
a 128-dimensional spectral feature vector. To enforce spectral fidelity,
the spectral feature contrastive loss is defined as:

sim(E4, EF) )

LS =—-1lo 21)
4 ¢ (sim(EA, ED)+ ey, sim(E], EN)

where sim(-, -) denotes the cosine similarity, and N, represents the set
of negative PAN spectral samples.

At the spatial level, we extract structural details from X, M, and P
using a Sobel operator, obtaining:

E*=VX, EF=vP, EN=vMm (22)

The fused image spatial feature E# is encouraged to align with the
HR PAN image while remaining distinct from the LR MS image. The
spatial detail contrastive loss is formulated as:

| sim(EA, EP)
= —lo,
¢ sim(EA{‘,E!’)+ZENENX sim(EA, EN)

To further ensure global spectral consistency, a reconstruction-
based consistency loss is introduced:

23

Leon = 1D, (X) — M, 24

spa

where D,,,(-) denotes the spatial degradation. A cosine annealing strat-
egy is adopted to dynamically balance spectral and spatial constraints

during training:

w, = é(l+cos<7¥>) (25)

where ¢ is the current training iteration, and 7 is the total schedule
length. This design emphasizes spectral learning in early stages while
gradually balancing spatial and spectral objectives.

Finally, the overall training objective in this stage integrates all
three components:

Lope = Logn +€ (1—wﬂ>c;‘+wﬂ£;‘] (26)

where ¢ and 7 serve as scaling factors to unify the magnitude of
different loss terms, ensuring they contribute effectively in the same
optimization framework. This formulation enables the fused image to
achieve a desirable trade-off between spectral fidelity and spatial detail
preservation.
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3.4. Interpretability efficacy coefficient

In pan-sharpening, deep learning models have achieved remarkable
progress in improving both spatial and spectral quality. However, their
inherent black-box nature makes it difficult to clearly understand how
features are extracted and fused within the network. The balance
between spatial detail enhancement and spectral preservation is often
implicit and not directly observable. This limitation reduces the trust-
worthiness, transparency, and controllability of such models, and may
further affect the reliability of fused outputs in downstream applica-
tions. Therefore, incorporating interpretability analysis is essential for
evaluating and achieving explainable artificial intelligence-based fusion
methods.

SHAP, one of the most classical and widely used model inter-
pretability methods, is a game theory-based feature attribution ap-
proach that quantifies the influence of different features on the result.
It can effectively describe the local contribution of each input spectral
bands to the model output in pan-sharpening. However, existing studies
still lack a global, quantitative, and comparable measure that can
consistently evaluate interpretability across models.

Friedman and Popescu (2008) suggested that an effective inter-
pretable model should strike a balance between conciseness and feature
importance. Motivated by this principle, this study builds upon the
SHAP framework and introduces a new composite interpretability met-
ric, interpretability efficacy coefficient. Drawing inspiration from the
concept of system efficiency in energy theory, the IEC integrates multi-
ple statistical measures derived from SHAP values into a single, unified
score. By combining principles from information theory, statistical
mechanics, and signal processing, the proposed IEC aims to quantify the
efficiency of interpretability in pan-sharpening models. In other words,
it evaluates the sufficiency, stability, and conciseness of the model’s
interpretability throughout the fusion process.

3.4.1. Fundamental statistics of SHAP matrix

Since SHAP values are local explanation indicators and can only be
compared in terms of relative magnitude within the same model and
sample, we normalize them to obtain a unified representation. In this
work, given a model with N input spectral bands and M output bands,
we denote the normalized SHAP matrix as @ € RM*N  where each
element ¢, ; measures the absolute contribution of the ith input band
to the jth fused output band. The matrix @ is obtained by applying a
global normalization:
gyl

i ] 7

where max |®| denotes the maximum of all sampled SHAP values.
Based on @, we extract four fundamental metrics that capture different
aspects of model interpretability for each output band.

Mean Influence: This metric quantifies the average contribution
strength of input bands to each output, reflecting the overall utilization
of spectral information:

N M
T N 1 )
K=y T R=y IR @8
iz i=

where R/ denotes the overall contribution to the jth output band. A
higher value indicates stronger overall feature utilization (Friedman
and Popescu, 2008).

Standard Deviation of Influence: It measures the variation of band
contributions within each output, indicating the stability and balance
of model attention across inputs:

-
S:HZSJ. (29)

A lower S indicates that the model distributes attention more evenly
across input bands, leading to more robust interpretability, whereas a
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higher .S suggests excessive sensitivity to certain bands (Ghorbani et al.,
2019).

Top-3 Focus: It reflects the concentration degree of model attention
by computing the proportion of the top-3 largest contributions relative
to the total influence:

3 -
_ EQZI ¢j 1
TSN ;7 M
Zi= 1 ¢j,i M j=1
where q.';j denotes the ath largest contribution for the jth output chan-
nel. A higher F indicates that only a few key spectral bands dominate
the fusion decision, which often aligns with physical priors in remote
sensing.
Influence Entropy: From an information-theoretic perspective, this

metric measures the dispersion of contributions across input bands
using Shannon entropy (Shannon, 1948):

7 N

o B WI IS
Yis ) i=1

where p;,; denotes row-wise normalization of the Shapley matrix, E/

is the Shannon entropy of jth output channel. A higher E indicates an

overly uniform contribution distribution, suggesting that the model’s

decision logic is diffuse and lacks clear focus.

Fi F/, (30)

Mz

EJ
log N~

BD

M=

1
M

Jj=1

3.4.2. The proposed IEC

Different statistical metrics focus on different aspects of model
interpretability. Relying on any single metric alone may result in a
partial assessment, failing to capture the overall behavior of the model.
Therefore, in this work, we propose a novel comprehensive metric,
the IEC, which consolidates four fundamental statistics and can com-
prehensively evaluate the strength, uncertainty, and focus of model
interpretability. The formulation of IEC is defined as:

_R-F iR
S-E
where the product R - F captures the Effective Explanatory Energy,
reflecting the overall strength and focus of the model’s explanations.
The term S - E quantifies the Explanatory Uncertainty Dissipation,
indicating variability and dispersion in feature contributions. Finally,
e~I'=Fl serves as a Decision Conciseness Correction, quantifying the
concentration of the model’s explanations.

Effective Explanatory Energy: This term quantifies the “effective
energy” provided by the explanation. The mean influence R reflects the
overall contribution of features, while the focus F reflects the simplicity
of the decision logic. Their product indicates that an efficient explana-
tion must exhibit both high impact and high focus. As we all know,
in pan-sharpening tasks, the fused results are typically expected to be
highly correlated with the spectral information of the corresponding
original bands and the spatial details provided by the PAN band. This
corresponds to a model that fully exploits band information (high R)
while focusing its decision on a few physically meaningful key bands
(high F), consistent with multispectral imaging priors (Friedman and
Popescu, 2008).

Explanatory Uncertainty Dissipation: This component quantifies
the “energy loss” or noise inherent in the explanation. By placing
S and E in the denominator, the metric penalizes explanations that
are either unstable or ambiguous. (1) Statistical Noise S: A large S
indicates substantial variation in Shapley values across spectral bands,
implying low stability in feature attribution (Ghorbani et al., 2019).
In pan-sharpening, high § implies minor fluctuations in non-key bands
disproportionately affect the fusion result. (2) Information Noise E: A
high entropy E reflects a diffuse and unfocused decision logic with
lower informational clarity (Shannon, 1948; Kay, 1993). In the context
of pan-sharpening, this suggests that the model treats all bands nearly
equally, failing to highlight the core spectral bands that are most
critical for producing high-quality fusion results.

(32)
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Decision Conciseness Correction: Inspired by the Boltzmann
distribution in statistical mechanics, |1 — F| is defined as the “en-
ergy of decision dispersion” (Chandler, 1987). When F approaches 1,
the decision becomes highly concentrated, corresponding to a stable,
low-energy state in which the correction term ¢~!'-F| behaves almost
linearly. As F decreases, the decision grows increasingly dispersed,
leading to an unstable, high-energy state where the penalty e!'~-F!
escalates exponentially. The term e/~ thus encourages concise and
transparent explanations that align with physical priors, ultimately
enhancing both interpretability and generalizability (Rasmussen and
Ghahramani, 2001).

Overall, the IEC constructs a multi-factor cooperative evaluation
framework. It combines “Effective Explanatory Energy” and ‘“Explana-
tory Uncertainty Dissipation” as the core efficacy foundation, further
enhanced by the non-linear “Decision Conciseness Correction” to incen-
tivize simplicity. This composite structure integrates principles from in-
formation theory, statistical mechanics, and signal processing with the
physical characteristics of pan-sharpening, elevating interpretability
evaluation from abstract attribute description to a quantitative measure
of model interpretability efficiency. It provides a powerful tool for
quantifying decision logic simplicity and robustness in pan-sharpening
models.

4. Experimental results

This section presents experiments designed to evaluate RevFus. We
include both reduced- and full-resolution experiments on three data
sets, as well as an ablation study and further discussions.

4.1. Experimental setting

4.1.1. Data sets

This study employs three satellite data sets for both reduced-
and full-resolution experiments: QuickBird (QB), Gaofen-2 (GF2), and
WorldView-2 (WV2).

QB captures a PAN image along with four multispectral (MS) chan-
nels covering the visible to near-infrared spectrum (Red, Green, Blue,
and NIR). The resolutions are 0.61 m and 2.44 m, respectively. For our
experiments, QB images are drawn from Shenzhen, China, representing
an urban environment dominated by buildings and roads.

GF2 provides images through PAN and four MS channels (Blue,
Green, Red, NIR), with resolutions of 0.81 m and 3.24 m, respectively.
The GF2 imagery used in this work comes from Nanning, China,
including diverse terrain such as vegetation, land, and water bodies.

WV2 acquires one PAN channel with eight MS channels, including
standard Blue, Green, Red, plus Coastal-Blue, Yellow, Red-Edge, NIR1,
and NIR2. Its spatial resolutions are 0.46 m and 1.85 m. The selected
WV2 data covers San Francisco, USA, featuring a mixture of urban
structures, hills, and vegetation.

Collectively, these data sets offer a range of landscapes and acquisi-
tion conditions, providing a robust basis for evaluating the performance
of the proposed model. All results presented are derived from these
selected satellite images.

4.1.2. Comparison methods

In this study, we compare our RevFus with seven traditional algo-
rithms and six state-of-the-art deep learning-based methods, including
BDSD (Garzelli et al., 2007), Adaptive Gram-Schmidt transformation
(GSA) (Aiazzi et al.,, 2007), Adaptive Component Substitution with
Partial Replacement (PRACS) (Choi et al., 2010), Modulation Transfer
Functions-Generalized Laplacian Pyramid-High-Pass Modulation (MTF-
GLP-HPM) (Aiazzi et al., 2006), ATrous WaveleT (ATWT)-M3 (Ranchin
and Wald, 2000), AWLP (Otazu et al., 2005), TV (Palsson et al., 2013),
Z-PNN (Ciotola et al., 2022b), LDPNet (Ni et al., 2022), ZSPan (Cao
et al., 2024), PGMAN (Zhou et al., 2021), TFResNet (Liu et al., 2020c),
PLRDIff (Rui et al., 2024), and UCL (Xiao et al., 2026).

Traditional algorithms and five of deep learning-based methods can
quickly achieve unsupervised pan-sharpening without training, while
TFResNet are data-driven. We deploy it with the proposed CCSL.
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4.1.3. Quantitative metrics

Two types of experiments are conducted in this study: reduced-
resolution testing following Wald’s protocol (Wald et al., 1997), and
full-resolution testing.

In reduced-resolution evaluation, five quantitative metrics are em-
ployed to assess pan-sharpening performance in both spatial and spec-
tral domains: Correlation Coefficient (CC), mean Peak Signal-to-Noise
Ratio (mPSNR, in dB), mean Structural SIMilarity (mSSIM) (Wang et al.,
2004), Spectral Angle Mapper (SAV, in degrees) (Kruse et al., 1993), and
Erreur Relative Globale Adimensionnelle de Synthése (ERGAS). Higher val-
ues of CC, mPSNR, and mSSIM indicate better image quality, whereas
lower values of RMSE, SAM, and ERGAS correspond to reduced distor-
tion.

For full-resolution evaluation, four metrics are considered: Quality
with No Reference (QNR) (Alparone et al., 2008), High-Quality QNR
(HQNR) (Aiazzi et al.,, 2014), and the two components of HQNR,
namely the spectral distortion Df and the spatial distortion D,. Better
fusion results are reflected by lower distortion indices, which lead to
higher QNR or HQNR values.

4.1.4. Implementation details

The proposed approach consists of two stages. In RevFus, the feature
dimension is 64, and a scale of two indicates the employment of two
Haar wavelet samplers. In the degradation-fusion learning stage, the
weighting coefficients are set as « = 0.33 and g = 0.67, with g, =
B, = 0.5. In the structural detail compensation stage, the parameters ¢
and 7 are set to 0.1 and 0.001, respectively. Both stages are optimized
using the Adamax algorithm with an initial learning rate of 0.001
under a OneCycleLR schedule, which dynamically adjusts the learning
rate to improve convergence and overall performance. All CNN-based
models are implemented in PyTorch and trained on a Linux workstation
equipped with 1 TB of RAM and an NVIDIA A40 GPU. In contrast, con-
ventional methods are executed in MATLAB on an Intel Core i7-1355U
CPU (1.70 GHz). Results for all traditional methods were generated
using the pan-sharpening MATLAB toolbox developed by Vivone et al.
(2020), while results for deep learning-based methods were obtained
using the implementations provided by their respective authors.

4.2. Results on QuickBird dataset

Table 1 presents the quantitative results obtained on the Quick-
Bird dataset. Additionally, Fig. 5 illustrates the visual performance in
false-color composite format for the reduced-resolution experiments.

4.2.1. Reduced-resolution experiments

As shown in Table 1, among the traditional pan-sharpening meth-
ods, PRACS achieves the best overall performance, followed by TV,
which slightly surpasses PRACS in SAM. BDSD performs the worst in
both spectral fidelity and spatial preservation. Deep learning-based ap-
proaches generally outperform conventional algorithms. For instance,
TFResNet improves mPSNR by approximately 1.8-2 dB over traditional
methods and reduces SAM, highlighting the benefits of learning spatial
and spectral features. In contrast, generative-based methods, including
GAN- and diffusion model-based approaches, tend to exhibit lower
performance across these metrics. Our proposed RevFus achieves the
best results in all evaluated indices, attaining the highest spatial eval-
uation indexes, as well as the lowest SAM and ERGAS. This marked
improvement can be attributed to the degradation-to-fusion learning
strategy and the cycle-consistency self-learning, which provide physi-
cally grounded constraints and enable more effective spectral-spatial
feature alignment.

Since the key distinction of remote sensing images from conven-
tional RGB images lies in the near-infrared (NIR) band, we adopt
false-color synthesis on the QuickBird dataset to better highlight the
NIR information. This allows us to more clearly analyze the perfor-
mance of different algorithms in preserving spectral fidelity within this
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Table 1
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Quantitative assessment on the QuickBird data. The best performance are shown in bold and the second best are underlined.

Methods Reduced-resolution testing Full-resolution testing

CC mPSNR mSSIM SAM ERGAS QNR Dy Df HQNR
BDSD 0.9294 30.4495 0.8291 4.3523 3.6824 0.9190 0.0150 0.3438 0.6463
GSA 0.9373 31.4089 0.8234 3.9263 3.3650 0.8160 0.0690 0.2290 0.7177
PRACS 0.9528 33.6325 0.8627 3.2344 2.5214 0.9484 0.0293 0.2239 0.7534
MTF-GLP-HPM 0.9414 31.7537 0.8485 3.4660 3.2187 0.8151 0.0645 0.1269 0.8168
ATWT-M3 0.9393 32.3005 0.8318 3.7516 2.9624 0.9301 0.0351 0.3106 0.6652
AWLP 0.9323 31.0635 0.8278 3.3574 3.4181 0.7903 0.0570 0.2986 0.6614
TV 0.9497 32.7300 0.8574 3.2342 2.8122 0.9450 0.0415 0.3664 0.6073
Z-PNN 0.9104 29.4261 0.7882 5.3894 4.4199 0.8160 0.0317 0.1589 0.8144
LDPNet 0.9293 31.7835 0.8101 3.7093 3.0926 0.9565 0.0313 0.2517 0.7249
ZSPan 0.9170 30.2634 0.7863 4.9296 3.7621 0.8665 0.0580 0.1580 0.7932
PGMAN 0.9224 28.5246 0.7779 4.2196 4.5097 0.9576 0.0412 0.2789 0.6914
TFResNet 0.9382 32.4348 0.8562 3.8137 2.8966 0.9028 0.0287 0.3173 0.6631
PLRDIff 0.8124 27.4977 0.6527 9.2623 5.3881 0.8086 0.1457 0.2622 0.6303
UCL 0.9385 31.7408 0.8507 3.3000 3.0796 0.8924 0.0300 0.2265 0.7503
RevFus 0.9614 34.3730 0.9084 3.0439 2.3173 0.9776 0.0117 0.1379 0.8520

(k) Z-PNN

(n) PGMAN (o) TFResNet (p) PLRDiff (q) UCL (r) RevFus

Fig. 5. Visual comparison of pan-sharpening methods on the QuickBird dataset in the reduced-resolution testing scenario. The results are displayed in false-color,

where bands 4, 3, and 2 correspond to the RGB channels.

critical band. As illustrated in the enlarged vegetation regions of Fig. 5,
traditional methods such as GSA and AWLP often either over-sharpen
or blur spectral details. PRACS and TV preserve spectral fidelity but
exhibit minor blurring or smoothing. Z-PNN produces overly sharp

textures, making vegetation details appear unnatural, while PLRDiff
introduces noticeable noise and artifacts. LDPNet renders the vege-
tation regions overly smooth, losing fine texture details. In contrast,
ZSPan and our proposed RevFus maintain texture patterns that closely
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Table 2
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Quantitative assessment on the Gaofen-2 data. The best performance are shown in bold and the second best are underlined.

Methods Reduced-resolution testing Full-resolution testing

CcC mPSNR mSSIM SAM ERGAS QNR D, Df HQNR
BDSD 0.9048 31.3159 0.8376 4.5906 5.1625 0.9199 0.0555 0.0435 0.9034
GSA 0.9307 31.9031 0.8569 3.8487 4.7055 0.8554 0.0594 0.0330 0.9095
PRACS 0.9499 36.0971 0.9061 3.6958 3.5148 0.9193 0.0177 0.0478 0.9353
MTF-GLP-HPM 0.9337 34.2323 0.8915 3.6741 4.4738 0.7983 0.0739 0.0235 0.9043
ATWT-M3 0.9364 34.5333 0.8851 4.1665 4.0644 0.8910 0.0576 0.0538 0.8917
AWLP 0.9163 32.1412 0.8507 3.5407 4.6949 0.7962 0.0715 0.0247 0.9055
v 0.9635 37.4370 0.9329 3.3583 2.9843 0.9265 0.0588 0.0384 0.9051
Z-PNN 0.8818 29.8225 0.7929 7.7254 9.0632 0.7966 0.0622 0.0476 0.8931
LDPNet 0.9246 33.9958 0.8721 4.2671 3.9661 0.9041 0.0819 0.0503 0.8719
ZSPan 0.8856 31.6318 0.8049 6.3007 4.9554 0.8010 0.1310 0.0404 0.8338
PGMAN 0.9253 33.9528 0.8686 3.8240 3.9588 0.8767 0.1206 0.0509 0.8347
TFResNet 0.9008 32.9904 0.8672 4.6878 4.7426 0.8822 0.0454 0.0573 0.8999
PLRDiff 0.9180 29.6733 0.8440 12.8467 7.5355 0.8777 0.0756 0.0475 0.8805
UCL 0.9261 33.5803 0.8730 3.8389 4.2803 0.9046 0.0521 0.0289 0.9205
RevFus 0.9602 36.5191 0.9379 3.2124 3.0838 0.9604 0.0269 0.0231 0.9506

resemble the ground truth, with RevFus achieving the most accurate
balance between spatial detail and spectral fidelity, demonstrating
the effectiveness of the proposed structural detail compensation in
preserving fine structural features.

4.2.2. Full-resolution experiments

As reported in the last four columns of Table 1, among traditional
model-based methods, PRACS and TV achieve relatively better perfor-
mance, with QNR values exceeding 0.94. In contrast, GSA exhibits the
highest D,, indicating inaccurate extraction of spatial details, while
MTF-GLP-HPM attains the lowest spectral distortion (Df). This can be
attributed to the presence of small, densely clustered buildings in the
QuickBird images, which complicates the extraction of spatial features.

Among deep learning-based methods, LDPNet, PGMAN, and ZSPan
improve over traditional algorithms but still exhibit certain limitations
in balancing spatial and spectral information. Specifically, LDPNet
shows slightly higher spectral distortion in some regions, and PG-
MAN fails to achieve the lowest spatial distortion. ZSPan, benefiting
from better spectral preservation, attains a relatively high HQNR. In
contrast, our proposed RevFus consistently outperforms all competing
methods, achieving the highest QNR, the lowest spatial distortion, and
competitive spectral distortion. These improvements can be attributed
to the degradation-to-fusion learning strategy, which first models the
degradation process to achieve the fusion, as well as the introduction
of alignment-based spatial detail reprojection, effectively improving
spatial detail representation.

4.3. Results on Gaofen-2 dataset

Table 2 reports the quantitative results on the Gaofen-2 dataset,
where the best performance is shown in bold and the second best are
underlined. Moreover, Fig. 6 displays the visual results in true-color
synthesis for full-resolution testing.

4.3.1. Reduced-resolution experiments

As shown in Table 2, traditional methods demonstrate competi-
tive performance. Among them, TV achieves the best overall results,
yielding the highest CC, mPSNR, and the lowest ERGAS, but this
comes at the cost of high computational complexity, which limits
its practicality in large-scale applications. PRACS follows closely with
strong performance in all metrics, particularly achieving a low SAM.
However, methods such as Z-PNN and PLRDIff suffer from large spectral
distortions, reflected by significantly higher SAM and ERGAS values.
Deep learning-based approaches like LDPNet and PGMAN outperform
most traditional algorithms in certain metrics but still show limitations
in maintaining a balance between spatial and spectral fidelity. By
comparison, the proposed RevFus achieves consistently superior results
across almost all metrics, attaining the highest mSSIM and the lowest
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SAM, while also delivering second-best CC, mPSNR, and ERGAS. More
importantly, RevFus provides a more robust balance between spatial
and spectral fidelity, which can be attributed to the accurate modeling
of the degradation process in the first stage and the spatial-spectral
contrastive learning in the second stage, jointly ensuring reliable and
physically consistent fusion.

4.3.2. Full-resolution experiments

In the full-resolution evaluation, RevFus further demonstrates clear
advantages. It achieves the highest QNR and HQNR, along with the low-
est spectral distortion Df . Moreover, it maintains a competitive spatial
distortion D, ranking second among all methods. Although PRACS
achieves the lowest D,, showing the advance of CS-based methods in
spatial detail injection. Similarly, MTF-GLP-HPM yields the second-best
Df but suffers from lower QNR. These results indicate that RevFus is
more capable of jointly optimizing spatial and spectral fidelity. The
superior performance of RevFus can be attributed to its invertible
degradation modeling, which enforces physical consistency between
fusion and degradation.

The visual results for full-resolution testing on the Gaofen-2 dataset
further complement the quantitative assessment. Among traditional
methods, AWLP appears visually superior with well-preserved tex-
tures, whereas ATWT-M3 suffers from noticeable blurring, and TV
shows insufficient fine details. For deep learning-based methods, Z-
PNN and TFResNet achieve a relatively good balance between spatial
and spectral fidelity, while LDPNet exhibits loss of fine details. ZSPan
and PGMAN produce somewhat blurred results, and PLRDiff intro-
duces severe spectral distortions. In comparison, the proposed RevFus
effectively preserves both spatial details and spectral fidelity, deliver-
ing fusion results that are visually more consistent with the ground
truth. This demonstrates that the combination of degradation-to-fusion
learning and spatial-spectral contrastive learning enables robust and
physically consistent image fusion.

4.4. Results on WorldView-2 dataset

Table 3 reports the quantitative results on the WorldView-2 dataset,
where the best performance is shown in bold and the second best are
underlined. Moreover, Fig. 7 displays the visual results in true-color
synthesis for reduced-resolution testing. Compared with the previous
two sensors, which provide four-band multispectral data, WorldView-
2 captures eight spectral bands, significantly increasing the fusion
difficulty and resulting in noticeable decreases across all quantitative
metrics.
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(m) PGMAN (n) TFResNet (o) PLRDiff (p) UCL (q) RevFus

Fig. 6. Visual comparison of pan-sharpening methods on the Gaofen-2 dataset in the full-resolution testing scenario. The results are displayed in true-color, where
bands 3, 2, and 1 correspond to the RGB channels.

Table 3

Quantitative assessment on the WorldView-2 data. The best performance are shown in bold and the second best are underlined.
Methods Reduced-resolution testing Full-resolution testing

CcC mPSNR mSSIM SAM ERGAS QNR D, Df HQNR

BDSD 0.6851 21.4516 0.4801 8.7772 12.2564 0.9598 0.0400 0.3332 0.6402
GSA 0.7633 22.6819 0.5366 7.5127 10.6750 0.9077 0.0700 0.2640 0.6845
PRACS 0.7819 23.5347 0.5606 7.1914 9.6707 0.9429 0.0345 0.2449 0.7291
MTEF-GLP-HPM 0.8095 24.0484 0.5949 6.6441 9.1836 0.9513 0.0309 0.1325 0.8407
ATWT-M3 0.8141 24.3457 0.5643 6.9154 8.8416 0.9071 0.0729 0.2826 0.6651
AWLP 0.8004 23.7039 0.5784 7.3005 9.4939 0.9467 0.0282 0.1418 0.8340
vV 0.8004 23.4319 0.5745 8.6758 9.7802 0.9614 0.0286 0.2450 0.7334
Z-PNN 0.7549 21.4874 0.5308 8.9331 11.3725 0.9197 0.0578 0.1921 0.7612
LDPNet 0.7940 23.8314 0.5362 9.8029 9.1734 0.9230 0.0313 0.2131 0.7622
ZSPan 0.8496 23.7649 0.6824 8.7633 9.2171 0.8362 0.1404 0.1401 0.7392
PGMAN 0.8016 23.9945 0.5621 7.3515 8.9129 0.8822 0.0954 0.2409 0.6866
TFResNet 0.8835 25.9612 0.7527 7.9309 7.4842 0.8679 0.0647 0.4644 0.5009
PLRDiff 0.7345 22.3739 0.5139 7.4734 10.5139 0.9033 0.0667 0.2554 0.6949
UCL 0.7743 22.8183 0.5620 6.9051 10.2032 0.9077 0.0657 0.1661 0.7791
RevFus 0.9002 26.8413 0.7600 6.7277 6.7089 0.9711 0.0216 0.0958 0.8846
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Fig. 7. Visual comparison of pan-sharpening methods on the WorldView-2 dataset in the reduced-resolution testing scenario. The results are displayed in true-color,

where bands 5, 3, and 2 correspond to the RGB channels.

4.4.1. Reduced-resolution experiments

Among traditional algorithms, MTF-GLP-HPM and ATWT-M3 achi-
eve competitive results. PRACS also demonstrates robust performance
with a relatively low SAM and ERGAS. In contrast, BDSD and GSA
exhibit substantially lower correlation and higher spectral errors com-
pared to the best traditional methods. Deep learning-based approaches
generally improve performance over traditional algorithms, with TFRes-
Net increasing correlation and mSSIM by approximately 10%-15%
relative to the best traditional baseline. However, challenges remain
for some learning-based models. ZSPan over-sharpens textures, leading
to a marked rise in SAM, whereas LDPNet demonstrates only moderate
spectral degradation. By comparison, RevFus consistently outperforms
all competing methods, achieving the best CC, mPSNR, mSSIM, and
ERGAS, enhancing correlation and mPSNR by roughly 5%-10% and
reducing SAM by around 10% relative to the second-best approach.
These results demonstrate the effectiveness of the proposed framework
in maintaining a stable trade-off between spectral fidelity and spatial
detail preservation.

The visual results for reduced-resolution testing on the WorldView-2
dataset further illustrate the quantitative findings. Among traditional
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methods, BDSD is strongly influenced by the PAN image, resulting
in noticeable spectral distortions, while MTF-GLP-HPM appears visu-
ally optimal with well-preserved textures. ATWT-M3, however, intro-
duces visible artifacts that slightly degrade image quality. For deep
learning-based methods, Z-PNN and PLRDiff demonstrate competitive
performance in both spatial detail preservation and spectral fidelity.
Nevertheless, our proposed RevFus produces fusion results that are
most consistent with the ground truth, achieving the highest alignment
of spatial structures and spectral information.

4.4.2. Full-resolution experiments

In full-resolution evaluation, traditional methods often exhibit an
imbalance between spatial and spectral preservation, with some achiev-
ing low spatial distortion at the expense of higher spectral errors, and
vice versa. Deep learning-based models improve one aspect but still
compromise the other, resulting in limited HQNR gains. RevFus, how-
ever, reduces both spatial and spectral distortions by roughly 15%-25%
compared with the best competing methods, yielding a substantially
higher overall quality index.
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Table 4
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Ablation study on WorldView-2 dataset. The inclusion of INN, HaarS, CCSL, SDC, and S’CL modules is indicated by v. CC,
PSNR, SSIM, SAM, and ERGAS are reported. The rows in between show the relative change (%) compared with the previous

configuration.
Methods INN HaarS CCSL SDC S2CL CcC PSNR SSIM SAM ERGAS
Z-PNN X X X X X 0.7549 21.4874 0.5308 8.9331 11.3725
Percentage change - +5.13% +11.36% +2.81% -10.97% -18.92%
CSSL w/o0 HaarS v X X X X 0.7936 23.9283 0.5457 7.9533 9.2207
Percentage change - +9.16% +6.42% +19.55% +20.79% -18.14%
D2FL w/o CCSL v v X X X 0.8663 25.4644 0.6524 9.6071 7.5485
Percentage change N +0.53% +1.99% +5.73% —26.38% —7.49%
RevFus w/o SDC v v v X X 0.8709 25.9705 0.6898 7.0730 6.9831
Percentage change - +3.28% +3.16% +9.70% -1.55% —2.06%
RevFus w/o S*CL v v v v X 0.8995 26.7922 0.7567 6.9637 6.8389
Percentage change - +0.08% +0.18% +0.44% -3.39% -1.90%
RevFus v v v v v 0.9002 26.8413 0.7600 6.7277 6.7089
Table 5

Computational efficiency comparison of the proposed RevFus among deep learning-based

methods based on WorldView-2 dataset.

Method Params (M) FLOPs (G) Training time (s) Inference time (s) Total time (s)
Z-PNN 0.081 20.105 20.196 0.024 20.220
LDPNet 0.131 23.138 1543.968 0.046 1544.014
ZSPan 0.079 40.158 256.635 0.008 256.642
PGMAN 3.932 73.742 91.324 0.014 91.338
TFResNet 2.366 111.319 15.575 0.013 15.588
PLRDiff 391.048 2868.580 - 221.199 221.199
UCL 3.452 76.633 40.111 174.332 214.443
RevFus 72.104 1908.9 183.901 0.273 184.174
4.5. Ablation study
Table 6

To investigate the contribution of each key module in the proposed
RevFus framework, we conducted an ablation study on the WorldView-
2 dataset, as summarized in Table 4. The involved modules are INN,
Haar wavelet sampler, the cycle-consistency self-learning, structural
detail compensation, and spatial-spectral contrastive learning.

From the table, compared with Z-PNN, the INN-based model ex-
hibits better spatial fidelity and spectral preservation. Since D2FL w/o
HaarS corresponds to an INN-based model without Haar samplers or
CCSL, the comparison with D2FL w/o CCSL highlights the effect of
introducing Haar samplers. We observe that spatial fidelity is further
improved, while SAM also increases, which can be attributed to the lack
of strong spectral consistency constraints. Comparing D2FL w/o CCSL
with RevFus w/o SDC, the inclusion of CCSL moderately improves the
metrics, particularly reducing SAM by over 26%, highlighting its impor-
tance in enforcing cycle-consistency to stabilize unsupervised training
and maintain spectral fidelity. Adding SDC (RevFus w/o0 S?>CL) further
boosts performance, with mPSNR and mSSIM increasing by 3.2% and
9.7%, respectively, indicating that structural detail compensation ef-
fectively enhances spatial representation. Finally, incorporating S*CL
in the full RevFus model achieves the best results, yielding addi-
tional gains of 0.2-0.4% in mPSNR and mSSIM and reducing SAM by
3.4%, demonstrating that spatial-spectral contrastive learning effec-
tively aligns high-quality spatial and spectral features and contributes
to robust fusion of spatial details and spectral fidelity.

Overall, these results confirm that the combination of degradation-
to-fusion learning, structural detail compensation, and the proposed
learning strategies is essential for achieving superior pan-sharpening
performance.

4.6. Computational efficiency
Table 5 presents a comparison of the computational efficiency of

RevFus with other deep learning algorithms on WorldView-2 dataset,
measuring model parameters, Floating Point Operations (FLOPs), and
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Quantitative comparison of interpretability metrics across seven
deep learning-based pan-sharpening models on the WorldView-2
dataset. R, S, F, and E denote the Mean Influence, Standard De-
viation, Top-3 Focus, and Influence Entropy, respectively, while
n represents the proposed IEC. Higher # values indicate stronger,
more stable, and more focused interpretability performance. Su-
perscript numbers indicate per-metric ranks (1 = best). Cells
highlighted in red, green, and blue mark the top-1, top-2 and
top-3 performances per metric, respectively.

Method R N F E n

Z-PNN 0.2062*  0.2516° 0.7460*  0.6123
LDPNet 0.04647 [10:13991 0.6607° 0.2184
ZSPan 0.1793°  0.28207 [[10:85421" 0.60137 | 0.7806
PGMAN | 0.41262 0.17702  0.48795  0.96687  0.7050
PLRDiff 057661 | 0.2751°  0.48077  0.92245  0.6500
TFResNet ~ 0.1693%  0.2274*  0.6964*  0.7569°  0.5057
RevFus  [JOR2I26ZIN0N089 0.79312  0.69862  0.9868

runtime. It is important to note that PLRDIff is a diffusion-based model,
which requires 1000 steps for inference. For fairness, the reported
FLOPs and runtime are calculated based on the whole steps.

As shown in the table, due to the use of INN, the proposed RevFus
has a relatively larger model size. However, compared with most self-
supervised fusion methods, it achieves a shorter inference time, albeit
at the cost of a longer training time. For frameworks that require
iterative inference, such as PLRDiff and UCL, although the training time
is relatively short, their inference time is significantly longer.

Overall, considering the total computational time, the efficiency of
the proposed RevFus is acceptable, especially when taking its superior
unsupervised performance into account. Meanwhile, computational ef-
ficiency continues to be a limitation of this work. Moving forward,
a major research direction is to realize efficient unsupervised fusion
framework through more lightweight INN modules.
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Fig. 8. Row-normalized SHAP matrices derived from seven deep learning models on the WorldView-2 dataset, visualized as heatmaps. The color intensity reflects
the relative contribution of each spectral band to the model’s output. The horizontal axis denotes the input spectral bands, while the vertical axis represents the

output fused bands.

4.7. Model interpretability evaluation

4.7.1. Quantitative comparison

Table 6 compares interpretability across seven deep learning-based
pan-sharpening models on the WorldView-2 dataset using four Shapley-
derived metrics and the proposed IEC 75, which unifies them into a
single measure of interpretability efficiency.

RevFus achieves the highest 5, ranking top-3 in all four metrics,
indicating strong, stable, and focused explanatory patterns, reflecting
a well-structured fusion mechanism with minimal uncertainty. ZSPan
attains the second-highest #, benefiting from high focus F and low
uncertainty E, though its higher variance S suggests less stable inter-
pretability across outputs. PGMAN shows competitive n with high mean
influence R and stability .S, but low top-3 focus F indicates a more dis-
tributed contribution pattern. PLRDiff achieves the highest R, yet low
F and high E reveal scattered, less interpretable contributions, while
Z-PNN and TFResNet demonstrate moderate interpretability. LDPNet
records the lowest »#, with minimal influence R and poor focus F,
reflecting weak and diffuse attribution despite low variance S.

In summary, models with balanced high influence, low uncertainty,
and concentrated focus tend to achieve superior interpretability effi-
ciency, such as RevFus and ZSPan. Moreover, the proposed 5 metric ef-
fectively captures these multidimensional traits, offering a unified and
physically meaningful criterion for evaluating interpretability across
deep pan-sharpening models.

4.7.2. Contribution analysis

To better understand the feature utilization patterns of different
pan-sharpening models, we visualized row-normalized SHAP matrices,
as shown in Fig. 8. Row normalization ensures that, for each output
spectral band, the contributions of all input channels sum to one,
allowing for a clear comparison of the relative importance of each
input channel. This approach highlights which input channels are most
influential in predicting each output band, making the models’ decision
logic more interpretable and facilitating task-specific analysis.

The heatmaps reveal distinct patterns that reflect both the mod-
els’ internal strategies and the intrinsic characteristics of the pan-
sharpening task. For Z-PNN, ZSPan, and RevFus, the contributions are
highly concentrated: for each output band, the corresponding original
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spectral channel and the PAN band consistently exhibit the highest
attribution. This observation aligns with the pan-sharpening principle,
where the reconstruction of each output band should primarily rely on
its original multispectral information complemented by high-resolution
spatial details from PAN. Notably, RevFus places an even greater em-
phasis on the PAN band compared to Z-PNN and ZSPan, which likely
explains its superior performance in spatial detail reconstruction and
its higher interpretability.

In contrast, TFResNet and LDPNet predominantly rely on the PAN
band across nearly all output bands, with weaker contributions from
the original spectral channels, indicating an emphasis on spatial in-
formation while the utilization of spectral information remains fur-
ther improvement. PGMAN exhibits a systematic bias in which input
channels B1, B7, B8, and PAN contribute more strongly across all
output bands, regardless of the target band, suggesting that the network
architecture favors certain spectral features and thus reduces the align-
ment between input and output channels expected in pan-sharpening.
PLRDIff displays scattered and less structured contributions, with no
clear correspondence between output bands and specific input chan-
nels, implying a diffuse integration of information from all inputs and
weaker interpretive clarity.

Overall, the heatmaps reveal that models such as RevFus, Z-PNN,
and ZSPan effectively combine the corresponding spectral band with
PAN information, producing clear and focused interpretability. These
visual observations complement the quantitative » metric, providing
task-specific insight into how each model balances spectral fidelity and
spatial detail in pan-sharpening.

5. Conclusions

This work presents RevFus, a novel unsupervised pan-sharpening
framework that effectively integrates physically grounded modeling
with advanced learning strategies. By explicitly modeling the degra-
dation process through an invertible neural network and enforcing
cycle-consistency, the proposed method ensures reliable and inter-
pretable fusion. The introduction of structural detail compensation and
spatial-spectral contrastive learning further strengthens spatial detail
preservation and spectral fidelity. Moreover, combining four SHAP-
derived metrics, IEC is proposed to evaluate the model interpretability
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comprehensively. Extensive reduced-resolution and full-resolution ex-
periments on QuickBird, Gaofen-2, and WorldView-2 datasets demon-
strate that RevFus consistently surpasses state-of-the-art unsupervised
and traditional methods with high model interpretability. The improve-
ments highlight the importance of combining degradation-to-fusion
learning with targeted constraints for robust and high-quality pan-
sharpening. These findings suggest that frameworks motivated by phys-
ical processes are effective in addressing the limitations of unsupervised
approaches in complex scenarios. Future work will investigate the
extension of this framework to multi-temporal and hyperspectral data,
aiming to further enhance generalization and applicability in diverse
remote sensing tasks.
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