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Abstract— Due to the limitations of sensor hardware devices,
the hyperspectral image (HSI) often suffers from various types
of noise, such as Gaussian noise, impulse noise, stripe noise, and
deadlines, which can significantly degrade their quality. Although
many data-driven methods have been proposed to deal with
complex noise, few of them consider the structural characteristics
of noise. This not only leads to a lack of interpretability but
also results in poor performance when dealing with structural
noise in practical applications. To address this issue, this article
proposes KPInet, a convolutional neural network (CNN) driven
by the structural knowledge of noise for HSI denoising. First and
foremost, the knowledge optimization-driven module (KODM)
utilizes the deep unrolling method to unfold a total variation
(TV) algorithm that considers the structural characteristics of
noise. This approach improves the network’s interpretability
and results in better performance on structural noise, while
maintaining the effect of removing Gaussian noise. Second, the
statistical feature injection module (SFIM) extracts more features
by utilizing spectral gradients, medians, and means of the HSI.
Third, the multiscale degradation guidance module (MDGM)
utilizes a dual-stream decoder with a low-resolution upsampling
guidance branch to better distinguish the real structure and noise
structure in the HSI. Experimental results on simulated and real
datasets indicate that the approach achieves favorable denois-
ing performance, as evidenced by both quantitative evaluation
metrics and visual results. Furthermore, it also demonstrates the
robustness and generalization capacity of the proposed KPInet.

Index Terms— Convolutional neural network (CNN), deep
unrolling, hyperspectral image (HSI) denoising, mixed noise, total
variation (TV) model.

I. INTRODUCTION

HYPERSPECTRAL image (HSI), due to its rich spectral
information, has been widely applied in dealing with

various tasks, such as classification [1], pan-sharpening [2],
[3], object detection and tracking [4], and damage detection
[5]. However, the imaging energy of the spectrometer is
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attenuated, which inevitably corrupts the observed HSIs with
complex noise such as Gaussian noise, impulse noise, stripes,
and deadlines. These noise significantly degrade the visual
quality of HSIs and restrict their further applications [6], [7].

In the beginning, it is crucial to comprehend the distinct
characteristics and sources of noise in order to develop
effective denoising techniques. Gaussian noise, arising from
random variations in the intensity of light, conforms to a
normal distribution. Impulse noise, caused by errors in the
imaging sensor or transmission system, manifests as isolated
pixels with extremely high- or low-intensity values. Stripes,
caused by the nonuniformity of the sensors or errors in the
calibration process, appear as a series of bright or dark lines
running horizontally or vertically across the image. Finally,
deadlines represent regions where no data are captured and
are typically observed as black lines in the image. Among
these, stripes and deadlines are more difficult to remove as
they are highly structured and often intertwined with the
underlying image structure. In comparison to Gaussian and
impulse noise, these two forms of structural noise exhibit
intricate spatial distributions that cannot be easily modeled by
simple statistical models. Hence, there is an urgent need for an
efficient denoising method capable of effectively suppressing
Gaussian and impulse noise, while also adeptly handling
structural noise.

In the past few decades, various methods have been pro-
posed to address the problem of the HSI denoising. These
methods can be broadly categorized into two types: model-
driven and data-driven methods. Model-driven methods, which
are based on mathematical models, often have a clear phys-
ical interpretation, allowing for better understanding of the
denoising process. Examples of such methods include filter
[8], [9], [10], [11], [12], [13], sparse representation [14], [15],
low rank (LR) [16], [17], [18], [19], [20], and total variation
(TV) regularization [21], [22], [23], [24]. This category of
methods for HSI denoising has several advantages. They are
often based on physical models that can capture the basic
process of the degradation and the characteristics of noise,
which ensures stronger generalization across different sensors.
Most importantly, these models perform well at removing
structural noise by considering the physical characteristics
of the noise, as demonstrated by some destriping methods
[21], [25]. Although the great interpretability and generaliza-
tion ability of model-driven methods make them attractive
options for many denoising tasks in practical applications,
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these advantages come with a cost. The inclusion of complex
mathematical models results in numerous hyperparameters that
require manual adjustment for different scenarios, making their
usage inconvenient. Finally, model-driven approaches struggle
to handle complex noise due to the inability of existing
physical models to accurately represent it.

With the increasing availability of large datasets, the
advancements in machine learning algorithms have led to
the rapid development of data-driven methods for denoising.
These methods have gained popularity in recent years due to
their superior performance and faster speed. Data-driven meth-
ods primarily include deep-learning-based algorithms, such as
convolutional neural network (CNN)-based methods [26], [27],
[28], [29], attention-based methods [30], [31], [32], and recur-
rent network-based methods [33], [34]. Data-driven methods
achieve several advantages over model-driven methods. First
of all, compared with model-driven methods, they have supe-
rior nonlinear fitting ability and can learn complex nonlinear
input–output relationship from a large number of the HSI data.
This advantage allows them to capture the underlying features
of complex noise through powerful learning abilities, enabling
the construction of effective denoising models. Second, with
a sufficient number of training samples, data-driven methods
can achieve state-of-the-art denoising performance through an
end-to-end approach. This also means that these methods do
not require manual adjustment of additional hyperparameters
during usage, delivering excellent results and extremely fast
processing speeds. However, data-driven methods rely on
black-box neural networks with numerous uncertain parame-
ters, resulting in highly complex models that are challenging to
interpret. When processing HSI data, they do not specifically
consider the prior knowledge of noise. As a result, they lack
the ability to remove structural noise.

As model-driven and data-driven methods have their respec-
tive strengths and weaknesses, we aim to combine their
advantages and better overcome the limitations. Data-driven
methods offer powerful modeling capabilities, enabling effi-
cient removal of mixed noise. On the other hand, model-driven
methods can provide valuable physical priors that assist
data-driven approaches in effectively addressing structural
noise, especially wide ones. Therefore, we propose the utiliza-
tion of a model-driven algorithm that incorporates structural
noise features to guide the construction of the deep learning
network. By doing so, each step of the end-to-end network
acquires the physical meaning of learning structural priors,
facilitating the integration of model-driven and data-driven
approaches.

Based on the above discussion, this article proposes an
optimization-driven network with knowledge prior injection
(KPInet) for HSI denoising. The network consists of three
modules, including the knowledge optimization-driven module
(KODM), the statistical feature injection module (SFIM),
and the multiscale degradation guidance module (MDGM).
The main contributions of the proposed approach can be
summarized as follows.

1) To enhance the interpretability of the network and
improve its performance in removing structural noise,
we designed a module driven by knowledge optimization

called the KODM. The KODM incorporates the charac-
teristics of the noise structure, considering factors such
as the smoothness of the image structure in both spatial
and spectral directions, as well as the discontinuities
caused by structural noise.

2) The SFIM is introduced to extract statistical features
from the HSI, including spectral gradients, medians,
and means. These prior knowledge-driven features aid
the network in capturing relevant information more
effectively.

3) The MDGM uses a dual-stream decoder to restore the
HSI. It is guided by information from low-resolution
images during the upsampling process. This architec-
ture enhances the differentiation between real structure
and noise structure, resulting in more effective noise
removal.

4) We conduct extensive experiments to validate the effec-
tiveness of our proposed method. We compare its
performance with several methods, using both quan-
titative and qualitative evaluations. The results clearly
demonstrate the superior performance of our approach.

The rest of this article is organized as follows. Section II
provides a review of the related work on HSI denoising.
In Section III, we present our model formulation and network
details. In Section IV, we demonstrate the effectiveness of
KPInet through both simulated and real-world experiments.
Finally, we summarize the article and draw conclusions based
on the experimental results in Section V.

II. RELATED WORKS

In this section, we review HSI denoising methods in two
categories: model-driven and data-driven.

A. Model-Driven Methods

Model-driven methods are based on optimization mod-
els or mathematical theories. Earlier algorithms for 2-D
grayscale images were used band by band. For instance,
Buades et al. [10] proposed the nonlocal means (NLM) fil-
ter, Dabov et al. [8] proposed the block-matching and 3-D
(BM3D) filter, Gu et al. [35] proposed the weighted nuclear
norm minimization (WNNM), and Donoho [12] proposed the
wavelet transform. However, these denoising methods often
result in greater spectral distortion because they ignore the
correlation of spectral information. To address this limitation,
many authors tried to propose various spatial–spectral methods
for HSI. Heckel and Hand [9] proposed the 4-D (BM4D)
filter utilizing 4-D data by extending BM3D filter. Likewise,
Qian and Ye [11] proposed 3-D NLM, and Othman and Qian
[13] proposed 3-D wavelet, both based on previous methods.
These methods take into consideration adjacent bands, which
are particularly valuable for HSI recovery.

Then, to make full use of the prior information of the HSI,
TV and LR regularization methods are commonly employed.
TV regularization primarily smooths the image by minimizing
its gradient while preserving the edge information to the
greatest extent possible. Its advantage lies in its effectiveness
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in removing structural noise and preserving edge informa-
tion. For example, the spectral–spatial adaptive hyperspectral
TV (SSAHTV) proposed by Yuan et al. [23] considered both
spectral and spatial differences, the hybrid spatial–spectral
TV (HSSTV) proposed by Takeyama et al. [22] could better
remove artifacts, the anisotropic spectral-spatial TV (ASSTV)
proposed by Chang et al. [21] achieved great results in the
destriping by constraining the smoothness of image structure
and the discontinuity caused by noise. However, the TV-based
model often loses the detail information of the image, causing
the image to look fuzzy. The LR method mainly uses the LR
property of the image matrix to remove noise and can maintain
the structural information and details of the image. There are
three important and common tensor decompositions for char-
acterizing the LR features of the HSI: T-SVD [36], TUCKER3
[37], and CANDECOMP (CP) [38]. Zhang et al. [17] pro-
posed an LR matrix recovery (LRMR) model for the mixed
noise removal in the HSI. And He et al. [20] proposed the
nonlocal meets global (NGmeet) model by exploiting the sim-
ilarities among full-band patches. Additionally, some methods
combine LR and TV with promising results. On the one hand,
the LR-based methods can be used to efficiently separate the
LR clean image and the sparse noise. On the other hand,
the TV-based method can be adopted to effectively remove
the Gaussian noise [19]. The TV regularized LR matrix factor-
ization (LRTV) model proposed by He et al. [19] introduced
TV regularization into the LR matrix decomposition model.
The TV regularized LR tensor decomposition (LRTDTV)
proposed by Chen et al. [18] introduced ASSTV to consider
both spatial and spectral smoothness.

In recent years, many fast denoising methods based on
subspace representation have been proposed, which could
typically leverage the LR and sparse properties of the HSI to
separate noise from HSIs. These methods are usually faster,
more scalable, and more practical than model-driven methods.
FastHyDe proposed by Zhuang and Bioucas-Dias [39] was
an LR tensor approximation-based method that used tensor
decomposition and nuclear norm regularization to remove
noise while preserving the spatial and spectral structure of the
HSI. FastHyMix proposed by Zhuang and Ng [40] was a fast
mixed noise removal method that utilized LR tensor decom-
position and matrix shrinkage techniques to remove multiple
types of noise. Inspired by t-SVD, Lin et al. [41] proposed the
TenSRDe, which developed a tensor space representation that
can faithfully convey the intrinsic structure of the HSI tensor.

However, because of the complex mathematical structure,
the parameters in model-driven methods require manual set-
ting and adjustment. Moreover, there are a large number of
priors for different properties that result in high computational
complexity and significant time costs. In addition to efficiency
and running speed issues, the nonlinear fitting ability of
model-driven methods is limited, thus these methods can
hardly handle complex noise.

B. Data-Driven Methods

Data-driven methods have gained increasing popularity for
HSI denoising in recent years due to their capability to

automatically learn complex nonlinear mappings from data.
Numerous deep neural network architectures have been pro-
posed for HSI denoising.

CNNs have been widely used for HSI denoising due to
their ability to extract spatial features from high-dimensional
data. The spatial–spectral deep residual CNN (HSID-CNN)
proposed by Yuan et al. [26] is an early residual network
that considers both spatial and spectral feature extraction.
Zhao et al. [27] proposed the attention-based deep residual
network (ADRN), which utilized convolution layers with dif-
ferent filter sizes to extract multiscale features and employed
shortcut connections to incorporate multilevel information.
With the increase in computing power, 3-D convolutions have
been widely used in CNNs for HSI processing to more effec-
tively expand the convolutional receptive field and better fit
the HSI. 3-D atrous CNN (3DADCNN) proposed by Liu and
Lee [28] combined a spatial–spectral deep architecture with
3-D atrous convolution to better extract multiscale features.
Recurrent neural networks (RNNs) have also been used in
the HSI denoising, particularly for their strong ability to
model spectral correlation in the spectral domain. For example,
the 3-D quasi-RNN (QRNN3D) proposed by Wei et al. [33]
used a 3-D convolutional architecture to learn spatial–spectral
features from the HSI and has achieved impressive results in
denoising. Due to the limitations of convolutional design, the
ability of CNN and RNN models to capture global context
is limited. In contrast, self-attention mechanism enables the
model to attend to different regions of the input, allow-
ing it to better capture long-range dependencies and global
contexts. Nonlocal self-similarity neural network (NSSNN)
proposed by Fu et al. [34] integrates spatial–spectral rela-
tionship, global spectral correlation, and nonlocal spatial
correlation to extract features with more precise structures.
The local–global feature-aware transformer-based residual net-
work (FATR) proposed by Wang et al. [30] utilized a spectral
embedding operation and a multiscale windows partition-
ing scheme to extract spectral–spatial features from the
HSI. Besides, Chen et al. [32] proposed a transformer with
spatial–spectral constrains to achieve HSI denoising. With a
lot of training data, the above methods are greatly capable
of nonlinear mapping. However, they only rely on feature
extraction and do not consider the specific HSI priors.

Recently, several methods have been proposed to incor-
porate image priors into neural networks. These methods
can be categorized into four groups. First, some methods
utilize the principles of physical models to construct neural
networks [42]. For instance, Zhang et al. [42] proposed an
LR spatial–spectral network (LR-Net), which integrated the
LR matrix decomposition model into a deep CNN with 3-D
atrous convolution. Second, certain methods replace a specific
part of the algorithm with neural networks [43], [44], [45],
[46], [47], [48]. As an example, Xiong et al. [43] proposed
a model-aided nonlocal neural network (MAC-Net), which
first built a spectral LR model and then integrated a nonlocal
U-Net into the model. Third, some researchers have utilized
different loss functions to capture the HSI priors. For example,
Aetesam et al. [49] constructed a loss function by designing a
discriminative learning framework with a Bayesian viewpoint.
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Furthermore, HSI priors are utilized to extract mathematical
features during the preprocessing stage, thereby strengthening
the model’s ability to capture the spectral priors. For example,
Dou et al. [50] proposed a new data augmentation method
(PatchMask), which combined the characteristics of the HSI
for feature extraction and guided the network to focus on to
the noisy region.

Overall, both of data-driven and model-driven methods have
a long history of development and have achieved promising
results, but they still have their own limitations. The KPInet
aims to combine the two methods and leverage their comple-
mentary strengths.

III. METHODOLOGY

In this section, we will first derive the necessary formulas
for the model and then present the overall framework of the
KPInet, followed by a detailed description of three proposed
modules: the SFIM, the MDGM, and the KODM.

A. Model Formulation

The HSI captured by remote sensing satellites is often
contaminated by various types of noise, including Gaussian
noise, impulse noise, deadline, and stripe noise. The noise
model can be formulated as

Y = X + N (1)

where Y ∈ RW×H×C represents the noisy image, X ∈

RW×H×C denotes the original image, and N ∈ RW×H×C means
noise, including Gaussian noise, impulse noise, deadline, and
stripe noise.

Aiming to address denoising as an ill-posed inverse prob-
lem, the objective of this article is to estimate a latent clear
image from a given degraded image with multiple sources of
random noise. Theoretically, our task is to estimate a poten-
tial clear image X from given image Y containing multiple
types of random noise. To solve this problem, we adopt an
optimization model that includes data fidelity and prior terms.
The data fidelity terms measure the similarity between the
degraded image and the desired clear image, while the prior
terms impose constraints on the image

X̂ = argmin
X

∥Y−X∥
2
2 + λR(X) (2)

where X̂ represents the estimated X , argminX means that this
optimization problem is a minimization problem, ||·||

2
2 denotes

the L2 norm, and Y is the noisy input. λ is a weight parameter
for the prior term R(X), which maintains the tradeoff between
the data fidelity term and the prior term. The key to effective
noise reduction through an optimization model is to construct
an appropriate prior term.

Due to the filter-like structure of CNNs, they are better
suited for dealing with pixel-level noise such as Gaussian noise
and impulse noise than structural noise like deadline and stripe
noise. To better remove the structural noise, the characteristics
of the structure must be taken into account. For a specific noisy
HSI, all the structural noise extends in the same direction and
breaks the spatial and spectral continuity of the HSI. Along the

direction of the structural noise, adjacent pixels often exhibit
minimal differences, indicating local oversmoothing caused by
structural noise. Across the direction of the structural noise,
noise and image information appear alternatively, resulting in
noticeable discontinuities in the image. Similar discontinuities
are also observed in the spectral direction. Recognizing these
structural priors, the KPInet imposes constraints on the net-
work in both the spectral and spatial domains. Specifically, the
KPInet treats the denoising process as an optimization problem
and further refines the prior term

X̂ = argmin
X

∥Y−X∥
2
2 + λ1∥∇v X∥

2
2 + λ2∥∇z X∥

2
2

+ λ3∥∇hY − ∇h X∥
2
2 + µJ (X) (3)

where ∇v X and ∇h X represent the gradients of X across
the structural noise direction and along the structural noise
direction. Meanwhile, ∇z X denotes the gradient of X along
the spectral dimension. The gradient across the structural
noise direction of the output Y is represented by ∇hY . There
are three regularization parameters, λ1, λ2, and λ3, each
associated with a specific prior. The weight parameter for the
regularization term J (X) is denoted as µ. The first term in
the equation ensures that the restored image X̂ contains the
most relevant information from the observed image Y . The
second term enforces smoothness in the restored image by
suppressing the gradient across the direction of the structural
noise. This helps to mitigate the discontinuities caused by the
structural noise. The third term penalizes spectral gradients to
ensure spectral continuity. Finally, the fourth term maintains
the gradient along the structural noise direction by constraining
the difference between the gradient of the restored image X̂
and that of the noisy input Y . In this way, both the spectral
consistency in the spectral domain and the directional infor-
mation of structural noise in the spatial domain are effectively
utilized.

To solve the constrained optimization problem in (3), the
variable splitting technique is commonly used [51], [52]. This
technique introduces an auxiliary variable to decompose the
original problem into several subproblems that are easier to
solve. With the help of variable splitting technique, (4) intro-
duces an auxiliary variable H and reformulates the constrained
optimization problem in (3). Formulation can be defined as

X̂ = argmin
X

∥Y−X∥
2
2 + λ1∥∇v X∥

2
2 + λ2∥∇z X∥

2
2

+ λ3∥∇hY − ∇h X∥
2
2 + µJ (H), s.t. H = X (4)

where H is equal to X .
According to the half-quadratic splitting method, the cost

function is then transformed into

L(X, H) = ∥Y − X∥
2
2 + λ1∥∇v X∥

2
2 + λ2∥∇z X∥

2
2

+ λ3∥∇hY − ∇h X∥
2
2 + λ4∥X − H∥

2
2 + µJ (H)

(5)

where λ4 is a weight parameter that guarantees the consistency
of X and H .

Through variable splitting technique, (5) will be fur-
ther addressed by solving the following two subproblems
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Fig. 1. Overall architecture of the KPInet consists of three modules: SFIM (the orange box), MDGM (the purple box), and KODM (the cyan box). The
noisy HSI is fed into these three modules to obtain the estimated clean HSI.

Fig. 2. Knowledge optimization-driven module (KODM), which is based on (10). (a) Overall flow of the module. (b) Residual module (ResModule). (c) CAM.

iteratively:
X̂ = argmin

X
∥Y − X∥

2
2 + λ1∥∇v X∥

2
2 + λ2∥∇z X∥

2
2

+λ3∥∇hY − ∇h X∥
2
2 + λ4∥X − H∥

2
2,

Ĥ = argmin
H

∥H − X∥
2
2 + µJ (H)

(6)

where Ĥ represents the estimated H , and argminH means that
this optimization problem is a minimization problem.

For the X -subproblem, we use the gradient descent
algorithm to solve it, and the iterative formula is expanded
as

X̂ k+1
= X k

− ϵ
[
X k

− Y + λ1∇
T
v ∇v X k

+ λ2∇
T
z ∇z X k

+λ3∇
T
h ∇h(X k

− Y ) + λ4(X k
− H k)

]
= (1 − ϵ − ϵλ4)X k

+ ϵY + ϵλ4 H k
− ϵλ1∇

T
v ∇v X k

− ϵλ2∇
T
z ∇z X k

− ϵλ3∇
T
h ∇h(X k

− Y ) (7)

where ϵ is the optimization stride, and k ∈ [0, K ) is the
number of iteration times.

The H -subproblem is an optimization problem that requires
finding the value of H that minimizes the objective function.
Here, J (H) implicitly extracts the prior knowledge of H by
imposing certain constraints. From a mathematical perspective,
the H -subproblem is an optimization problem with both a dif-
ferentiable function ∥H − X∥

2
2 and implicit prior knowledge

J (H). Therefore, we use a proximal operator Prox(·) to solve
the H -subproblem

Ĥ k+1
= Prox(X k+1)

= argmin
H

∥∥H − X k+1
∥∥2

2 + µJ (H). (8)

With the help of the half-quadratic splitting and the gradient
descent algorithm, the problem of solving (3) is transformed
into the process of alternately updating (7) and (8).

B. Knowledge-Driven CNN With Prior Injection

In Section III-A, we derived formulations that can better
deal with structured noise, which is based on (7) and (8).
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For the complex implicit prior in the H -subproblem, it can
be learned by the CNN. However, for the X -subproblem,
it contains multiple parameters that require manual inter-
vention. Therefore, directly solving the two subproblems
alternately according to the formula is equivalent to embedding
the data-driven algorithm into the model-driven algorithm.
This approach will not only decrease the computational effi-
ciency but also greatly limit the optimization capability of
CNN. To solve this problem, the proposed KPInet is dedicated
to unfold the mathematical model into the end-to-end CNN by
replacing the operational process in the X -subproblem with the
convolutional process and the tensor operation.

Next, the overall structure of the proposed KPInet is pre-
sented in Fig. 1, and details of the network will be presented
in Sections III-B1–III-B3.

1) Knowledge Optimization-Driven Module: For the
H -subproblem, the proximal operator Prox(·) in (8) can
be replaced by any deep learning network [29] because of
the mathematical equivalence of regularized denoising. The
KODM uses the residual module (ResModule) instead, which
has become an important part of CNNs and has been widely
used in various tasks [53], [54], [55]. In the ResModule, the
input data is first fed into a convolutional layer and activation
function and then be added into the original input. This design
strengthens the flow of information and avoids the problem
of gradient vanishing, which also improves the accuracy and
stability. After substitution, the formula is written as

Ĥ k
= ResModule(X k). (9)

The ResModule comprises multiple residual blocks (Res-
Blocks) and utilizes skip connections to facilitate residual
learning. The specific structure is illustrated in Fig. 2(b).
Each ResBlock consists of three convolutional layers and
employs the Gaussian error linear unit (GELU) activation
function [56]. Initially, the input data are passed through
the first convolutional layer using a 1 × 1 kernel. This
operation increases the number of channels to enhance the
representation of spatial–spectral features. Subsequently, the
data are forwarded to the second convolutional layer, which
utilizes a 3 × 3 kernel to extract more abstract features with-
out altering the number of channels. Finally, the output
is fed into the third convolutional layer, which employs
a 1 × 1 kernel to reduce the number of channels. To introduce
nonlinearity, a GELU activation function is applied after
each convolutional layer. Additionally, the output from each
ResBlock is combined with the original input through a skip
connection, followed by another GELU activation function.
This process is repeated for several ResBlocks. Ultimately,
the final output is passed through a convolutional layer with
a 1 × 1 kernel to generate the final features.

With the help of the ResModule, we can get H k . Next, the
new equation will be given by rewriting (7) and (9). For the
convenience of reading, we reformulate the coefficient terms
of the variables in the new equation, which is represented as

X̂ k+1
= α1 X k

+ α2Y + α3ResModule(X k) − α4∇
T
v ∇v X k

− α5∇
T
z ∇z X k

− α6∇
T
h ∇h(X k

− Y ) (10)

where α1 = 1 − ϵ − ϵλ4, α2 = ϵ, α3 = ϵλ4, α4 = ϵλ1,
α5 = ϵλ2, and α6 = ϵλ3.

The one-way gradient solving process can be regarded as a
first-order difference operation, achieved through a specialized
convolution kernel. This approach forms the mathematical
foundation for implementing the operations ∇ and ∇

T using
1-D convolution. Consequently, we replace ∇

T
h ∇h , ∇

T
v ∇v , and

∇
T
z ∇z with two 5 × 1 convolutions, two 1 × 5 convolutions,

and two 5 × 1 × 1 convolutions, respectively. Each 1-D
convolution is subsequently followed by layer normalization
(LN) [57]. Additionally, we utilize pixel-to-pixel tensor multi-
plication, addition, and subtraction to implement the formula.
By employing 1-D convolutions and tensor operations in com-
puter implementation, we can leverage the parallel computing
capabilities of GPUs to enhance computational speed and
efficiency.

Upon identifying suitable alternative operators, there still
exist hyperparameters αi∈[1,6] within the formula that require
definition. Moreover, since HSI exhibits distinct radiation char-
acteristics across different channels, these hyperparameters
need to be calculated separately for each channel. The channel
attention module (CAM) [58], [59] can learn a channelwise
attention coefficient vector that assigns varying weights to
different channels based on their significance in representing
the target object or context. Consequently, we update the
αi∈[1,6] values by utilizing CAM to fully exploit the spectral
information present in HSI, thereby avoiding the manual set-
ting of hyperparameters for adaptation. The specific structure
of CAM is depicted in Fig. 2(c). Initially, the input feature
is fed into global average pooling and global max pooling,
yielding two pooling feature vectors. These vectors are then
passed through two 1 × 1 convolutions to obtain two channel
attention vectors. Subsequently, the vectors undergo activation
through two GELU functions. The resulting vectors are then
added together after being passed through another round of
two 1 × 1 convolutions. Finally, a sigmoid activation function
is applied to obtain a channel attention coefficient vector. The
CAM enables the network to emphasize informative channels
while suppressing irrelevant ones.

With the help of KODM, we can iteratively update our
X k using the initial values X0 and Y , ultimately achieving a
desirable outcome. To improve the performance of KODM in
removing structural noise, we aim for the X0 to have minimal
Gaussian noise, while Y should have stronger feature repre-
sentation capability. In the following parts, SFIM can obtain
the enhanced Y and MDGM performs coarse reconstruction
on X0 with reduced Gaussian noise.

2) Statistical Feature Injection Module: Advanced feature
extraction from input data improves the network’s capacity to
utilize valuable information, thereby improving its efficiency
and accuracy. To enhance the feature representation ability of
the Y , it is crucial to incorporate additional prior knowledge
into the input noisy images through feature extraction. Our
analysis of statistical information obtained from real noisy
HSIs reveals that gradient features between adjacent bands
contribute to enhancing sparse noise features such as impulse
noise, stripes, and deadlines. Similarly, computing the median
value across multiple bands effectively attenuates these sparse
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Fig. 3. Statistical feature injection module (SFIM).

noise elements. This is because they are sparse and typically
manifest as extreme values resulting from sudden pixel value
changes. Additionally, computing the mean values across mul-
tiple bands can slightly mitigate the impact of Gaussian noise
on the image structure. Leveraging these statistical features,
our proposed SFIM extracts the spectral gradient, mean, and
median from the noisy images, thereby providing additional
features for Y , as illustrated in Fig. 3.

Specifically, given a noisy image, we calculate the spectral
gradient image ∇c between its bands c ∈ (0, C) and c + 1
and insert it between the two bands. This process expands
the number of channels from C to 2C − 1. Subsequently,
we compute the median and mean values of the noisy image,
which are concatenated as additional bands at the end of the
image. This augmentation of statistical information provides
the network with richer features. After undergoing the SFIM,
the number of channels expands from C to 2C + 1.

Through the extraction of statistical features from the noisy
image, the SFIM achieves a more comprehensive representa-
tion of the data. The resulting Y , enriched with additional prior
features, enables the network to gain a better understanding of
the data, thereby enhancing its performance in the given task.

3) Multiscale Degradation Guidance Module: In HSI pro-
cessing, multiscale information is very important [60], [61].
It has been observed that low-resolution images tend to have
less noise compared to high-resolution images. Building upon
this observation, this article proposes the MDGM which
utilizes low-resolution images as priors to guide the denoising
process and ultimately obtain a coarse reconstruction denoted
as X0. The structure of MDGM is shown in Fig. 4.

To incorporate both spatial and spectral information effi-
ciently, we adopt a joint 1-D–2-D convolution approach
instead of the computationally intensive 3-D convolution [42],
which considers spatial and spectral dimensions simultane-
ously. In our architecture, the 1-D convolution with a kernel
size of 5 × 1 × 1 operates on the spectral dimension, while
the 2-D convolution with a kernel size of 1 × 5 × 5 operates
on the spatial dimensions. Subsequently, a joint convolution
is applied, followed by LN, and another joint convolution
followed by the GELU activation function, forming the con-
volution block (ConvBlock).

In the encoder–decoder structure, adjacent pixel values are
merged into a single pixel during the downsampling process
of the encoder. This merging process effectively reduces
high-frequency structured noise and produces a less noisy
low-resolution image in the final layer. To leverage this charac-
teristic, MDGM employs an encoder–dual-decoder structure,
which guides the extraction of multiscale information by

utilizing low-resolution information. Each downsampling layer
in the encoder consists of a max-pooling layer and a Con-
vBlock. Conversely, each upsampling layer in the dual-decoder
comprises a ConvBlock followed by a transpose convolu-
tion. The dual-decoder consists of two branches: the original
upsampling branch, which retains more structural features
of the original image through skip connections, and the
low-resolution upsampling guidance branch, which employs
the low-resolution image to guide the image restoration pro-
cess. Importantly, the results of the low-resolution guidance
branch at each scale are solely derived from the bottom low-
resolution image. This structural design enables the network
to better discern the image structure from structural noise
during the upsampling process, leading to more effective noise
removal.

The MDGM effectively removes a substantial amount of
Gaussian and impulse noise, as well as some deadlines and
stripes. With the MDGM, we can obtain better coarse recon-
struction X0 from the original noisy image. However, the
obtained X0 still exhibit a significant amount of stripe-like
artifacts. This is because the structural noise that spans the
entire image is challenging to remove by filter-like convolu-
tions. Then, the X0 is fed into the KODM to generate the final
denoising result X̂ .

C. Implementation Details

1) Loss Function: Although the L2 loss function is com-
monly used in many data-driven methods, it has some
limitations in the denoising problem. The squared term of L2
loss is very sensitive to noise and small detail changes, which
may cause oversmoothing or detail loss. In contrast, the L1
loss function preserves details better and is more robust to
noise and small changes. That is because it linearly reduces
the loss when the error is small. Furthermore, the L1 loss helps
the network to learn sparse noise more efficiently. Therefore,
using L1 loss is more appropriate for training the KPInet.

Structural noise can significantly destroy the gradient of the
image. Specifically, the gradient along the direction of the
structural noise will decrease, and the gradient through the
direction of the structural noise will increase. Considering
these effects, in addition to using an overall L1 loss between
the restored image X̂ and ground truth X , we also apply
L1 loss on the gradients of horizontal and vertical direc-
tions to better suppress structural noise. These loss functions
are represented as L1 = (1/n)

∑n
i=1 |X i − X̂ i |, L2 =

(1/n)
∑n

i=1 |∇v X i − ∇v X̂ i | and L3 = (1/n)
∑n

i=1 |∇h X i −

∇h X̂ i |, respectively.
To automatically weight the contribution of each loss,

we use a parameter adaptive strategy [62] which weighs
multiple loss functions by considering the homoscedastic
uncertainty of each loss. We compute the weighted sum of
the three parts of the loss function and obtain the final loss

L =

n∑
i=1

1
2σ 2

i
Li + log

(
1 + σ 2

i

)
, σi = exp(pi ) (11)

where L is the final loss, Li is the i th loss, σi is the
homoscedastic uncertainty of the i th task, and pi is the
learnable parameter used to estimate σi .
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Fig. 4. Multiscale degradation guidance module (MDGM).

2) LN and GELU: In traditional CNNs, batch normalization
(BN) and rectified linear units (ReLUs) are widely used for
better performance. However, ReLU suffers from the vanish-
ing gradient problem, where the gradient becomes zero for
negative input values, thereby affecting the training efficiency
of the model. Additionally, BN requires batch processing,
which limits its use in small batch sizes and may cause
overfitting in some cases. To address these issues, alternative
functions such as LN and GELU have been proposed, which
have shown to be advantageous over BN and ReLU in terms
of computational efficiency, improved accuracy, and better
generalization performance. Specifically, LN does not rely on
batch statistics and can adaptively normalize feature maps
with higher accuracy. And GELU has a smoother derivative
than ReLU, leading to better gradient propagation and thus
faster convergence. These two approaches have been proven
to improve the performance of CNNs in the new powerful
network, ConvNeXt [63]. Therefore, we use LN instead of
BN and GELU instead of ReLU in the ConvBlock to bring
better performance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we demonstrate the superiority of KPInet
through simulated and real experiments. We also present the
parameter settings through parametric analysis and demon-
strate the necessity and effectiveness of our proposed module
through ablation experiments.

A. Experimental Setting

1) Datasets: In simulation experiments, we use the Wash-
ington DC Mall (WDC) dataset. It is collected by the hyper-
spectral digital imagery collection experiment (HYDICE)
sensor. The image has a size of 1208 × 307 pixels and consists
of 210 spectral bands. However, only 191 bands are considered
for analysis after eliminating noisy bands. The size of the
training image patches used in our experiments is 128 × 128 ×

32, and a total of 22 200 patches are used for training. For
testing, we use the spectral grouping strategy, which divides
data of size 256 × 256 × 191 into six patches of size 256 ×

256 × 32.

In real experiments, we select four satellite datasets, which
are affected by mixed noise, especially stripe noise.

1) Zhuhai-1 (ZH-1) dataset, which is affected by wide
strips at the left image edge, is cropped to 256 × 256 ×

32 for testing.
2) Gaofen-5 (GF-5) dataset, which is affected by periodic

wide strips and Gaussian noise, is cropped to 256 ×

256 × 150 for testing.
3) Earth Observing-1 (EO-1) Hyperion dataset, which is

affected by complex noise, is cropped to 400 × 200 ×

166 for testing.
4) HYDICE Urban dataset, which is affected by extremely

heavy complex noise, is cropped to 307×307×210 for
testing.

2) Quantitative Evaluation Metrics: To evaluate the per-
formance of the proposed method, we utilize three commonly
used metrics: mean peak signal-to-noise ratio (mPSNR), mean
structural similarity index (mSSIM), and spectral angle mapper
(SAM). mPSNR is a widely used metric that measures the
quality of the reconstructed image by computing the mean
square error (mse) between the original and reconstructed
images. A higher mPSNR value indicates better image quality.
mSSIM is another popular metric that measures the structural
similarity between the original and reconstructed images in
terms of luminance, contrast, and structure. A higher mSSIM
value indicates better structural similarity. SAM measures the
spectral similarity between the two images by computing the
angle between their pixel vectors. Lower SAM values indicate
better spectral similarity. The definitions of these indices are
as follows:

mPSNR =
1
C

C∑
c=1

10 · log10

×

(
R2

· W · H∑W
i=1
∑H

j=1(Xc(i, j) − X̂ c(i, j))2

)
(12)

mSSIM =
1
C

C∑
c=1

(2µXcµX̂ c
+ S1)(2σXc X̂ c

+ S2)(
µ2

Xc
+ µ2

X̂ c
+ S1

)(
σ 2

Xc
+ σ 2

X̂ c
+ S2

) (13)

SAM = arccos
(

a · b
∥a∥∥b∥

)
(14)
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON WASHINGTON DC MALL, THE BEST INDEX IS PLOTTED

IN RED, AND THE SECOND BEST INDEX IS PLOTTED IN BLUE

where R represents the maximum possible pixel value.
Xc(i, j) and X̂ c(i, j) denote the pixel values of the clean
and processed images in channel c, respectively. µXc and µX̂ c

represent the mean values of the clean and processed images
in channel c, respectively. σXc X̂ c

stands for the covariance
between the clean and processed images in channel c. σXc and
σX̂ c

represent the variances of the clean and processed images
in channel c. S1 and S2 are constants introduced to stabilize
the division. a represents the spectral vector of the clean
image, and b represents the spectral vector of the processed
image. Additionally, ||a|| and ||b|| represent the magnitudes
of the spectral vectors for the clean and processed images,
respectively.

3) Comparison Methods: We compare the proposed KPInet
with seven denoising algorithms, including LRMR [17],
LRTV [19], LRTDTV [18], FastHyDe [39], FastHyMix [40],
QRNN3D [33], T3SC [48], and NSSNN [34]. The first five
are model-driven methods, and the last three are data-driven
methods.

4) Simulation Experiments: For the training dataset,
we introduce various types of noise to each band. Specif-
ically, we add Gaussian noise with a standard deviation σ

ranging from 0 to 75. Additionally, 30% of the bands are
contaminated with impulse noise, where the intensities vary
between 0.01 and 0.1. 30% of the bands contain deadlines,
with densities ranging from 5% to 15%. Similarly, 30% of the
bands have thin stripes, with densities varying from 15% to
65%. Finally, 30% of the bands are affected by one to ten wide
stripes, where the widths range from 10 to 25. This diverse
range of noise types and intensities ensures that the training
dataset encompasses various challenging scenarios commonly
encountered in practical applications.

For real HSI, the randomness of the noise is manifested in
the following aspects: random intensity, random density, and it
appears on random bands. In order to make our experimental

results more realistic and credible, we randomly add noise to
the WDC test dataset by the following settings.

1) Case 1 (Gaussian Noise + Stripe Noise): Gaussian noise
with σ ranging from 0 to 55 is added to each band, and
30% of the bands have thin stripes with densities ranging
from 15% to 50%.

2) Case 2 (Gaussian Noise + Stripe Noise + Impulse
Noise): On the basis of Case 1, we add impulse noise
with intensities ranging from 0.01% to 0.1% to 30% of
the bands.

3) Case 3 (Gaussian Noise + Stripe Noise + Impulse Noise
+ Deadlines): On the basis of Case 2, we add deadlines
with densities ranging from 5% to 15% to 30% of the
bands.

4) Case 4 (Gaussian Noise + Stripe Noise + Impulse Noise
+ Deadlines + Wild Stripes): On the basis of Case 3,
since wide stripes are also present in real remote sensing
images, we add one to ten wide stripes with widths
ranging from 5% to 10% to 30% of the bands.

5) Case 5 (Gaussian Noise + Stripe Noise + Impulse Noise
+ Deadlines + Wild Stripes): We increase the noise
intensity of Gaussian noise and strips based on Case 4.
Gaussian noise with σ ranging from 0 to 75 is added to
each band. We add one to ten wide stripes with widths
ranging from 10% to 25% to 30% of the bands and thin
stripes with densities ranging from 15% to 65% to 30%
of the bands.

5) Training Details: In the MDGM module, we employ
3-D convolution with channel combinations of [2, 8, 16]. For
the KODM module, we utilize six stages, each consisting
of six ResBlocks. This specific combination has consistently
demonstrated superior performance for our network, as dis-
cussed in Section II. As for optimization, we adopt the Adam
optimizer with a learning rate of 1e−4, betas set to (0.9, 0.999),
and a weight decay of 1e−4. To control the learning rate during
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training, we incorporate the cosine annealing learning rate
strategy. With a total of ten epochs and a minimum learning
rate of 1e−6, this scheduler facilitates a gradual reduction in
the learning rate. Such an approach helps prevent the model
from becoming trapped in local minima and enhances its
generalization capabilities. Our training process is conducted
on a Linux system, utilizing two NVIDIA RTX 2080Ti GPUs,
each with 11 GB of memory. The specific software and
hardware specifications include Python version 3.8.5, PyTorch
version 1.11.0 + cu113, and CUDA version 11.3. Furthermore,
all model-driven methods are implemented on a Windows
10 system using MATLAB R2021, which runs on an AMD
Ryzen 9 5950X 16-core CPU.

B. Simulation Experiments

1) Quantitative Results: We conducted simulation experi-
ments on WDC for removing mixed noise, and the quantitative
results are presented in Table I. The noise intensity varies
across the five cases due to the different distributions of
random noise. We have sorted the noise levels from low to
high for Cases 1–5. Since Gaussian noise with a high intensity
of σ = 50 is added to each band, the mPSNR values are
generally low. The mSSIM values exhibit significant variation,
mainly due to the varying degrees of structural noise damage
to the test image. Overall, our proposed method outperforms
the compared methods in nearly all cases, achieving the best
results.

For the cases with the strongest noise, Cases 4 and 5,
KPInet demonstrates the best performance. Specifically,
KPInet achieves significantly higher mSSIM values than other
methods, validating our original design intent of the network to
better handle structural noise. Additionally, we observed that
data-driven methods outperform model-driven methods, high-
lighting the powerful nonlinear fitting capabilities of neural
networks in addressing complex problems.

In Case 3, model-driven methods outperform data-driven
methods. However, we notice that the performance of
model-driven methods vary across different cases due to the
need for manual parameter tuning. The parameter set used
achieves optimal results in Case 3. In contrast, data-driven
methods consistently achieve stable and superior performance
across different cases without the requirement for manual
parameter tuning.

In the case of the weakest noise, Case 1, KPInet exhibits
a slightly lower mSSIM value by 0.0006 dB compared to
NSSNN, but the mPSNR results are higher than QRNN3D and
NSSNN. Since the structural noise in this case is weak, the
differences between KPInet and other methods are not signif-
icant. However, as the structural noise intensifies in the other
cases, the advantages of KPInet become more pronounced.
The KODM architecture in KPInet is specifically designed
to effectively handle structural noise, allowing it to deliver
superior results compared to other methods. As the structural
noise becomes stronger, the capability of KPInet to preserve
image structure and details are particularly beneficial, leading
to improved denoising performance.

Additionally, the results obtained from T3SC are somewhat
underwhelming. This could potentially be attributed to the

design of algorithm, which seems to primarily address specific
noise scenarios. Given that our task involves the simultaneous
presence of strong structural noise and Gaussian noise, there
might be some challenges in accurately estimating the under-
lying structure.

2) Qualitative Results: We present qualitative results using
the strongest noise case, Case 5, as shown in Fig. 5. The
noisy image contains Gaussian noise, impulse noise, dense
thin stripes, deadlines, and several wide stripes. One of the
wide stripes is located at the edge of the image and is up to
25 pixels wide.

First, we analyze the overall performance of the methods.
Among the model-driven methods, LRMR can only remove
some of the Gaussian noise. FastHyDe can remove more
Gaussian noise, but the stripe removal is not clean. LRTV and
LRTDTV leave heavy stripe artifacts. FastHyMix can remove
most of the Gaussian noise and stripes, but the results for wide
stripes and deadlines are poor, resulting in significant spectral
distortion. Among the data-driven methods, QRNN3D, T3SC,
and NSSNN can effectively remove Gaussian noise, dead-
lines, and thin stripes. However, QRNN3D makes the image
blurry and loses more details, T3SC struggles to effectively
handle wide stripes, and NSSNN still leaves a small amount
of artifacts. Additionally, the results of both QRNN3D and
NSSNN still show residual wide stripes in the yellow band.
Finally, the proposed KPInet exhibits significant improvements
in denoising. We provide two zoomed-in view, which clearly
demonstrate that our method effectively removes the stripes
and successfully recovers the structural details of buildings,
roads, and vehicles in the image. There are fewer residual
stripes in our results, which further demonstrates the excellent
performance of KPInet in removing structural noise. The
superior performance of KPInet in denoising demonstrates its
effectiveness and highlights its potential for applications in
denoising tasks.

Next, we show band 44 of the WDC test data in Fig. 6,
which is corrupted with dense deadlines, some stripes,
and Gaussian noise. LRMR, LRTV, and LRTDTV gener-
ate denoised results that still contain prominent stripes and
residual Gaussian noise. FastHyDe and FastHyMix effectively
remove the Gaussian noise but still leave behind noticeable and
prominent stripe artifacts. The reconstructions of data-driven
methods QRNN3D, T3SC, NSSNN, and KPInet are relatively
better. Furthermore, we provide a zoomed-in view. It can be
observed that both QRNN3D and NSSNN are affected by
stripes and exhibit discontinuities in the horizontal direction.
However, KPInet better reconstructs the corrupted information
in the deadline area and ensures greater continuity of image
information horizontally. T3SC is also proficient in addressing
deadlines. This can be attributed to its sparse coding approach,
which leverages information from other bands to recover
missing pixels effectively.

C. Real Experiments

1) ZH-1 Dataset: The results of the real experiment on
the ZH-1 dataset in bands (27, 14, 11) are shown in Fig. 7.
The ZH-1 dataset contains Gaussian noise and strips, often
with wide strips exceeding a width of ten pixels that cannot
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Fig. 5. Denoising results for WDC dataset in the synthetic data experiment, false color image with bands (60, 28, 19). (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) Ground truth. (g) FastHyMix. (h) QRNN3D. (i) T3SC. (j) NSSNN. (k) KPInet.

Fig. 6. Denoising results for WDC dataset in the synthetic data experiment, grayscale display with band 44. (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) Ground truth. (g) FastHyMix. (h) QRNN3D. (i) T3SC. (j) NSSNN. (k) KPInet.

be effectively eliminated by most existing methods. Although
LRTDTV and FastHyMix demonstrate good results, noticeable
stripes still exist in the left side of the image, disrupting the
horizontal continuity of the image. The results of T3SC are
also impressive, but some areas still display color distortions
attributable to the presence of wide stripes. LRMR, FastHyDe,
QRNN3D, and NSSNN exhibit noticeable color distortion in
the upper right corner of the urban area, resulting from the
presence of wide stripes. This indicates their limited capability
in handling wide stripes. In contrast, the proposed KPInet
not only effectively removes stripes but also preserves the
spectral correlation of the image, delivering better overall
performance. Furthermore, we provide the horizontal digital
number (DN) curve of the image in Fig. 8. In Fig. 8(a), large
waves can be observed in the curve due to stripe interference.

In comparison to other methods, the curves obtained by KPInet
appear smoother, indicating the superior effectiveness of the
proposed method in stripe removal.

2) GF-5 Dataset: The results of the real experiment on
GF-5 dataset in bands (165, 135, 95) are presented in Fig. 9.
We can observe that real images have periodic wide strips
and Gaussian noise and are severely affected by stripe noise.
LRMR, LRTV, FastHyDe, and FastHyMix are unable to
remove so many stripes, which result in noticeable color
distortion. Due to the excessive stripes, the deep learning
models QRNN3D, T3SC, and NSSNN are unable to restore the
image properly, resulting in multiple artifacts. The proposed
KPInet in this article and LRTDTV remove periodic wide
stripes in the image and have better performance than other
methods Furthermore, we give the vertical DN curve of the
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Fig. 7. Denoising results for ZH-1 dataset in the real data experiment, false color image with bands (27, 14, 11). (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

Fig. 8. Denoising results for ZH-1 dataset in the real data experiment, displayed in vertical mean DN curves of band (blue: 27, red: 14, and yellow: 11).
(a) Noisy image. (b) LRMR. (c) LRTV. (d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

image in Fig. 10. In Fig. 10(a), there are large waves in the
curve due to the interference of the stripes. Compared with
other methods, the curves of the results obtained by KPInet
are smoother, which proves that the method is able to remove
the stripes effectively.

3) EO-1 Hyperion Dataset: The EO-1 dataset consists of
images where the beginning and last few bands are damaged
by Gaussian, deadlines, and stripe noise. The results of the
real experiment on its bands 1 are displayed in Fig. 11.
The left side of this band is affected by strong Gaussian
noise, and none of the compared methods can effectively
correct the local color deviation caused by Gaussian noise.
However, KPInet excels in suppressing the whitish colors
caused by noise on the left side of the image, resulting in
a more consistent color representation across both the left and
right sides of the image. Regarding strip noise, QRNN3D and
NSSNN exhibit poor performance in handling wide stripes,
leaving behind noticeable artifacts. In addition, they fail to
remove the deadline in the middle. LRMR, FastHyDe, and

FastHyMix all achieve some degree of effective strip noise
removal, but none of them successfully eliminate the deadline
in the middle. LRTV demonstrates the worst removal effect
among the methods. Additionally, we provide local zoom-in
images of LRTDT, T3SC, and KPInet, which demonstrate
the best denoising effects. When compared to LRTDTV and
T3SC, KPInet not only effectively removes stripes, deadlines,
and Gaussian noise but also preserves and enhances fine details
in the image’s ground features.

4) Urban Dataset: The Urban dataset contains bands that
are severely disturbed by complex noise, including dense strips
in multiple directions, strong Gaussian noise, and impulse
noise. The results of the real experiment on its bands 107 are
displayed in Fig. 12. LRMR, LRTV, and FastHyDe are unable
to restore the ground features effectively. NSSNN exhibits
significant color distortion in the middle of the image and
fails to reconstruct the image edges due to the heavy influence
of strips. FastHyMix and QRNN3D result in uneven color
in the restored image, with noticeable stripes still present.
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Fig. 9. Denoising results for GF-5 dataset in the real data experiment, false color image with bands (165, 135, 95). (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

Fig. 10. Denoising results for GF-5 dataset in the real data experiment, displayed in horizontal mean DN curves of band (blue: 165, red: 135, and yellow: 95).
(a) Noisy image. (b) LRMR. (c) LRTV. (d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

TABLE II
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT NETWORK

CONSTRUCTION IN CASE 5 ON WDC TEST DATA

Furthermore, we provide local zoom-in images of LRTDTV,
T3SC, and KPInet, which demonstrate the best denoising
effects. When compared with LRTDTV and T3SC, KPInet
not only effectively removes stripes and Gaussian noise but
also highly preserves the detailed features of the ground.

D. Ablation Study

1) Different Network Construction: In Table II, we con-
duct ablative experiments on Case 5 of the WDC dataset
to analyze the impact of different modules added to the

baseline 3D-UNet network. The first module we introduce
is the low-resolution guidance strategy, MDGM, which leads
to improvements in the mPSNR and mSSIM metrics. This
indicates that incorporating low-resolution guidance enhances
the network’s denoising performance. Next, we introduce the
proposed SFIM. Although there is no significant improvement
in mPSNR and mSSIM, there is a noticeable decrease in SAM.
This suggests that augmenting the data with statistical infor-
mation and extracting gradient information between spectra
effectively utilizes the spectral information in the denois-
ing process. Finally, we incorporate the knowledge-driven
optimization strategy, KODM, resulting in a significant
enhancement in both mSSIM and mPSNR metrics. In addition,
SAM has also decreased by 0.0016 dB. In comparison to
the baseline, we observed a notable increase of 0.0325 dB
in mSSIM and 1.2281 dB in mPSNR. This clearly highlights
the effectiveness of KODM in improving the denoising per-
formance.

In summary, the ablative experiments show that the addition
of the MDGM, SFIM, and KODM modules progressively
improves the denoising performance of the baseline 3D-UNet
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Fig. 11. Denoising results for EO-1 Hyperion dataset in the real data experiment, grayscale display with band 1. (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

Fig. 12. Denoising results for HYDICE Urban dataset in the real data experiment, grayscale display with band 107. (a) Noisy image. (b) LRMR. (c) LRTV.
(d) LRTDTV. (e) FastHyDe. (f) FastHyMix. (g) QRNN3D. (h) T3SC. (i) NSSNN. (j) KPInet.

network. The incorporation of these modules enhances the
network’s ability to handle mixed noise and exploit spectral
information, leading to superior denoising results.

2) Different Loss Function: In Table III, we compare dif-
ferent loss functions on Case 5 of the WDC experiments.
Compared with directly calculating the loss of the entire
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TABLE III
COMPARISON OF DIFFERENT LOSS FUNCTIONS IN

CASE 5 ON WDC TEST DATA

TABLE IV
COMPARISON OF DIFFERENT NUMBER OF STAGES IN

CASE 5 ON WDC TEST DATA

TABLE V
COMPARISON OF DIFFERENT RESBLOCK NUMBERS IN

CASE 5 ON WDC TEST DATA

image, introducing the loss function with spatial gradient
constraint leads to better image denoising results, with an
improvement of 0.0047 dB in mSSIM and 0.5571 dB in
mPSNR.

E. Parametric Analysis

Finally, a parameter analysis is conducted on Case 5 of
the WDC experiments. In Table IV, the influence of the
number of stages in the KODM on the network performance is
discussed. It is determined that the network achieved the best
performance in each metric when the number of stages is set
to 6. In Table V, the impact of the number of ResBlocks used
in each KODM layer on network performance is examined.
Although using seven ResBlocks results in a slight decrease
in SAM, it significantly increases the computational cost.
Therefore, it is decided to select six ResBlocks to achieve
the optimal results.

V. CONCLUSION

In this article, we propose an optimization-driven CNN that
injected with prior information, named KPInet. The KPInet
complements the advantages of the model-driven and data-
driven method. In general, we propose three key modules.
Through deep unrolling, a model considering noise structure
is unfolded into an end-to-end CNN in the KODM. Second,
the statistical information is used to extract more features in
SFIM. Furthermore, the MDGM with a daul-stream decoder
is guided by low-resolution information. Finally, we present
the results of our experiments to demonstrate the effectiveness

of KPInet on both simulated and real datasets. We specif-
ically highlight its excellent ability to remove strip noise,
especially the wide one. Additionally, we thoroughly discuss
the effectiveness of each module in KPInet and analyze the
sensitivity of the parameters used in the framework. While the
strips in our experimental data are predominantly horizontal or
vertical, real-world HSIs have strips at various angles. In future
research, we will work on solving more complex and more
realistic noise, including oblique stripes.
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