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A B S T R A C T   

Glaciers serve as sensitive indicators of climate change, making accurate glacier boundary delineation crucial for 
understanding their response to environmental and local factors. However, traditional semi-automatic remote 
sensing methods for glacier extraction lack precision and fail to fully leverage multi-source data. In this study, we 
propose a Transformer-based deep learning approach to address these limitations. Our method employs a U-Net 
architecture with a Local-Global Transformer (LGT) encoder and multiple Local-Global CNN Blocks (LGCB) in the 
decoder. The model design aims to integrate both global and local information. Training data for the model were 
generated using Sentinel-1 Synthetic Aperture Radar (SAR) data, Sentinel-2 multispectral data, High Mountain 
Asia (HMA) Digital Elevation Model (DEM), and Shuttle Radar Topography Mission(SRTM) DEM. The ground 
truth was obtained for a glaciated area of 1498.06 km2 in the Qilian mountains using classic band ratio and 
manual delineation based on 2 m resolution GaoFen (GF) imagery. A series of experiments including the com
parison between different models, model modules and data combinations were conducted to evaluate the model 
accuracy. The best overall accuracy achieved was 0.972. Additionally, our findings highlight the significant 
contribution of Sentinel-2 data to glacier extraction.   

1. Introduction 

Glaciers are widely recognized as critical indicators of climate 
change, given their remarkable sensitivity to even minor climatic fluc
tuations (Lemke et al., 2007). Consequently, various regions across the 
globe are expected to experience shifts in water availability, both on a 
seasonal and long-term basis (Huss and Hock, 2018; Milillo et al., 2022), 
with arid and semi-arid environments particularly vulnerable to these 
changes (Immerzeel et al., 2010; Pritchard, 2019; Bhattacharya et al., 
2021). Accurately delineating glacier boundaries plays a vital role in 
assessing the extent of glacier areas (Racoviteanu et al., 2015) and 
comprehending the sensitivity of glacier change to environmental and 
local factors (Catania et al., 2018; Sun et al., 2019), which makes fast 
and accurate method of wide-range glacier extraction becomes very 
necessary (Paul et al., 2020). 

Remote sensing technology plays a crucial role in glacier extraction 
due to the remote locations and large spatial extents of glaciers. The 
choice of data source for glacier extraction is based on the distinct 

properties of different land covers on the glacier surface, and can be 
categorized into optical, Synthetic Aperture Radar (SAR), and multi- 
source datasets. Optical imagery serves as the fundamental data 
source for glacier extraction. The principle is based on the very low 
spectral reflectance of ice and snow in the shortwave infrared versus the 
high reflectance in the visible spectrum (Paul et al., 2015). Specifically, 
the approaches mainly include the thresholding method and the index- 
based method (Bolch et al., 2010). According to the Spatial-temporal 
resolution, the data source contains Landsat, Sentinel-2, Hexagon KH- 
9, and Pléiades et al. (Bolch et al., 2010; Holzer et al., 2015). Howev
er, the effectiveness of optical imagery is limited by weather conditions 
and challenges in distinguishing debris-covered glaciers from sur
rounding bedrock due to similar spectral characteristics. To overcome 
these limitations, SAR data has been employed in glacier extraction 
(Frey et al., 2012; Malenovský et al., 2012; Zhou and Zheng, 2017). SAR- 
based methods rely on two key theories. The first theory revolves around 
the low coherence exhibited by glaciers(both clean and debris-covered) 
due to their dynamic nature compared to the higher coherence of 
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adjacent bedrock. Common data sources for this theory include Sentinel- 
1 and Advanced Land Observing Satellite Phased Array Synthetic 
Aperture Radar (ALOS PALSAR) (Frey et al., 2012; Malenovský et al., 
2012; Zhou and Zheng, 2017). However, the processing of SAR coher
ence is intricate and constrained by non-steady deformation processes 
(Rosen et al., 2000). The second theory is based on the distinctive 
backscattering properties of glaciers and other land cover types. 
Sentinel-1 Ground Range Detected (GRD) data is widely employed 
within this framework (Peng et al., 2021; Wang et al., 2022c). Following 
the diversification characteristics of glaciers, the integration of multi- 
source data has emerged as a mainstream approach (Frey et al., 2012; 
Robson et al., 2015). Multi-source data typically includes optical im
agery, SAR data, and Digital Elevation Models (DEM). DEMs are useful 
for glacier extraction due to the elevation differences between glaciers 
and adjacent bedrock (Bolch et al., 2010). Object-Based Image Analysis 
(OBIA) is a commonly employed method in this context, wherein spe
cific surface features are captured using algorithms tailored to the 
respective data types (Blaschke, 2010). However, most existing ap
proaches for combining multi-source data focus on extracting distinct 
glacier parameters from different datasets (Holzer et al., 2015; Zhang 
et al., 2020; Zhao et al., 2020). Consequently, a more efficient approach 
for integrating multi-source data is necessary (Paul et al., 2013). 

However, the aforementioned methods rely on differentiating gla
ciers from surrounding land objects based on various characteristics 
such as spectral differences, coherence differences resulting from glacier 
changes, and elevation changes, among others. This approach to glacier 
identification gives rise to two challenges. Firstly, it struggles to accu
rately identify land features with subtle differences, such as glacier 
debris. Secondly, it requires the setting of different thresholds for gla
ciers with different characteristics. These limitations highlight the 
inherent inaccuracies and result variations in traditional methods due to 
differences in datasets and glacier geometries. Deep learning, on the 
other hand, offers a promising alternative by leveraging Convolutional 
Neural Networks (CNNs) and multi-layer learning to extract spatial in
formation of glacier outlines from remote sensing images (LeCun et al., 
2015; Xiao et al., 2021). Deep learning frameworks have provided 
effective solutions for visual object extraction tasks in remote sensing, 
including land cover mapping and the extraction of natural features such 
as lakes, as well as urban features such as buildings and roads, achieving 
state-of-the-art reconstruction results (Yuan et al., 2020). 

In the field of glacier extraction, deep learning technology has found 
applications. One of the early models is U-Net (Ronneberger et al., 
2015), which utilizes skip connections and a decoder with multi- 
upsampling layers to capture both low and high-level information. U- 
Net has been employed to segment ice and ocean in individual glaciers 
in Greenland and Antarctica (Baumhoer et al., 2019; Mohajerani et al., 
2019; Zhang et al., 2019). Another notable model is DeepLab V3+ (Chen 
et al., 2018), which incorporates the Atrous Spatial Pyramid Pooling 
(ASPP) module to expand the receptive field. This model enhancement 
has been applied to identify extensive and long-term glaciers, as 
demonstrated in the construction of the glacier termini dataset for 
multiple glaciers in Greenland (Cheng et al., 2021; Zhang et al., 2021). 
However, CNN-based models fail to consider the varying importance of 
image features. This deficiency has been effectively addressed by the 
attention mechanism, which dynamically weighs the significance of 
features based on their relationships and interactions within the input 
data (Ba et al., 2014; Wang et al., 2018; Woo et al., 2018). Chu et al. 
(Chu et al., 2022) have integrated the Convolutional Block Attention 
Module (CBAM) with the ASPP module of DeepLab V3 + to identify 
glacier within complex mountainous environments, achieving state-of- 
the-art results. To overcome this limitation, the Vision Transformer 
(ViT) (Dosovitskiy et al., 2020) has been employed to extract more 
cohesive glacier outlines across larger areas. In the context of image 
segmentation based on remote sensing data, most Transformer-based 
models adopt a hybrid design of CNNs and Transformers to capture 
both local and global information (Strudel et al., 2021; Wang et al., 

2022a; Zhang et al., 2022; Xiao et al., 2022). However, these combi
nations typically use a Transformer as the encoder and a CNN or 
Transformer as the decoder. This architecture posing challenges in 
simultaneously capturing spatial and semantic information for decoder. 
Regarding the encoder, the high computational cost of Transformers has 
spurred research on efficiently capturing global information, including 
several approaches that combine local and global Transformers using 
shifted and sub-window operations (Chu et al., 2021; Liu et al., 2021). 

To overcome these limitations, this paper aims at developing a novel 
algorithm that can obtained the local–global information of glacier 
feature based on the fusion of Transformer and CNN. We introduce the 
Transformer based model to extract local–global information of glacier 
outline, which is an early attempt of Transformer application in the 
glacier extraction. Unlike the standard Transformer with the pure CNN 
and Transformer as the decoder, we designed a decoder with an atten
tion layer and CNN to extract 1D and 2D feature information. In the 
meantime, the locally-grouped Transformer and a global sub-sampled 
Transformer were employed as encoder to capture the multi-scale 
long-distance information. Besides, in order to capture the spatial 
location information of the input sequence, we adopted Conditional 
Position Encoding(CPE) instead of the original position encoding of ViT 
so that the token’s length can vary with the input length instead of fixed. 
A series of experiments are performed to validate the applicability of the 
proposed method with the different combinations of Sentinel-1, 
Sentinel-2, three land indexes and elevation data. The quantitative 
evaluation and visual effects of the proposed method are verified 
through different models and ablation study. 

The rest of this paper is structured as follows. Section 2 introduces 
the methodology including the training dataset, deep learning model 
construction and their combined process. Section 3 presents experiment 
results and discussion. The experiments result contains assessments 
between different models, ablation study and contribution between 
different data combinations. The discussion is focus on the model’s 
response to the heterogeneous data and model efficiency. Finally, Sec
tion 4 provides the conclusions. 

2. Methodology 

In this study, we present a Transformer based model for glacier area 
extraction. The model consists of an encoder based on Local-Global 
Transformer (LGT) and a decoder composed of several Local-Global 
CNN Blocks (LGCB). Four types of remote sensing data are utilized as 
the training dataset. The ground truth for evaluation is the glaciated 
area covering 1498.06 km2 in the Qilian mountain region. The following 
section will provide a detailed introduction of datasets, construction of 
the model, and training process. 

2.1. Data source 

2.1.1. Remote sensing datasets 
This work utilized four types of datasets, namely SAR (Sentinel-1), 

optical (Sentinel-2), image band indices, and DEM. SAR and optical data 
have been widely used in glacier extraction due to their complementary 
nature in capturing land information. In addition, the normalized- 
difference snow index (NDSI) (Salomonson and Appel, 2004), normal
ized difference water index (NDWI) (Xu, 2006) and normalized differ
ence vegetation index (NDVI) were jointly employed to distinguish the 
glacier from the surrounding glacier lake, streams, and sparse vegetation 
(Wang et al., 2022c; Zhang et al., 2021). The DEM played a crucial role 
in identifying mountain glaciers from surrounding ridges and dis
tinguishing debris-covered glacier termini from valleys. Specifically, the 
datasets were divided into four parts, including: (1) two Sentinel-1 GRD 
bands of “VV” and “VH”, (2) five Sentinel-2 SR bands of “B2”, “B3”, 
“B4”, “B8” and “B11”, (3) three indexes bands conduct from sentinel-2 
bands, (4) one elevation band from High Mountain Asia (HMA) or 
SRTM DEM. All bands were resampled to a 10 m resolution. The details 
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of each band (Table 1) are as follows. 
Sentinel-1 acquires SAR imagery at the C-band (5.405 GHz) with 

varying polarizations and resolutions. In this work, the Sentinel-1 Level- 
1 GRD product is utilized, which consists of the vertical transmit/hori
zontal receive bands “VV” and “VH” (Torres et al., 2012). The resolution 
is 10 m. The pre-processed data for the 2018 summer was accessed from 
Google Earth Engine (GEE) platform. 

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging 
mission(Drusch et al., 2012). We utilized the Level-2 Bottom-Of-Atmo
sphere (BOA) corrected reflectance product, specifically incorporating 
bands B2 (496.6 nm), B3 (560 nm), B4 (664.5 nm), B8 (835.1 nm), and 
B11 (1613.7 nm). These bands are available as the Sentinel-2 Surface 
Reflectance (SR) product on the GEE platform. Expect B11(resolution: 
20 m), the resolution of all the other bands is 10 m. We acquired the 
summer 2018 product with a cloud cover percentage of less than 5%. 

NDSI, NDWI and NDVI were calculated through the Sentinel-2 bands 
mentioned in the previous paragraph with the formulation (1) (2) and 
(3) respectively. 

NDVI =
B4 − B8
B4 + B8

(1)  

NDSI =
B3 − B11
B3 + B11

(2)  

NDWI =
B3 − B8
B3 + B8

(3) 

The HMA DEM product (Shean, 2017) consists of 8-meter DEM 
mosaics of glacier and snow regions in the high mountain Asia (HMA) 
area, generated from very-high-resolution (VHR) commercial optical 
satellite imagery, including QuickBird (Toutin and Cheng, 2002; Shean 
et al., 2016). The dataset was obtained from the National Snow and Ice 
Data Center(NSIDC)(https://nsidc.org/data/hma_dem8m_mos/v 
ersions/1). However, HMA DEM can’t cover the whole study region. 
To address this, we used the SRTM DEM as a complementary dataset for 
an area of approximately 3978 km2. The SRTM V3 product provided by 
GEE platform was utilized (Farr et al., 2007). 

2.1.2. Ground truth 
The training label used in this study is glacier area at the Qilian 

mountains in 2018 (Fig. 1). These outlines were obtained through a 
combination of classical band ratio criterion and manual mediation, 
based on the 2 m resolution Gaofen(GF) imagery (Li, 2022). 

The Qilian Mountains (39.7◦ − 37.3◦ N, 93.4◦ − 102.8◦ E) encompass 
various types of glaciers, including continental glaciers in the central 
and eastern regions and polar glaciers in the western region (Shi and Liu, 
2000). Analysis of data from the First Chinese Glacier Inventory (FCGI) 
and Second Chinese Glacier Inventory (SCGI) revealed an area reduction 
of 420.81 km2 in the Qilian Mountains between 1956 and 2010 (Sun 
et al., 2018). 

According to the dataset, the Qilian Mountains in 2018 were home to 
a total of 2,740 glaciers covering an area of 1,514.01 km2. Among these 
glaciers, the glaciers with areas 1–––10 km2 accounted for the largest 
glacierized area (832.52 km2). In our study, we adopt the 2072 glaciers 
(area > 0.05 km2) with the total area of 1498.06 km2. 

2.2. Data pre-processing 

Data pre-processing was performed using GEE platform. The pre- 
processing steps involved:(1) filtering of Sentinel-1 GRD and Sentinel- 
2 SR image; (2) calculation of image band indices; (3) normalization 
of each band; (4) integration of 11 bands. The ground truth data is 
generated by converting the vector shapefiles into binary raster images. 
To enhance the training dataset, data augmentation techniques were 
applied, including rotation by 90◦, 180◦, and 270◦, as well as image 
flipping and mirroring. The flip operation vertically reorients the raster 
by flipping it from top to bottom along the horizontal axis through the 
center, while the mirror operation horizontally flips the raster from left 
to right along the vertical axis through the center. For training and 
validation, we utilized 70% and 30% of the data, respectively. 

After extracting the glacier area, the obtained results can be further 
divided into individual glaciers through a three-step process. Firstly, the 
patches are merged by averaging the overlapping areas to mitigate 
classification errors and ensure smooth junctions. Secondly, the binary 
image is converted into a shapefile format. Finally, small and isolated 
polygons are removed to obtain the final outline dataset. 

2.3. Model construction 

In this work, we utilize a U-shaped (Cao et al., 2021) Encoder- 
Decoder network that incorporates a combination of local and global 
information (Fig. 2). The encoder is implemented using the Local-Global 
Transformer (LGT), while the decoder consists of multiple Local-Global 
CNN Blocks (LGCB). The loss function combines dice and cross-entropy 
loss. Detailed descriptions of the encoder, decoder, and loss function are 
as follows. 

2.3.1. Encoder: Local-Global Transformer(LGT) 
LGT was adopted as the encoder to capture local–global information. 

Vision Transformer(ViT) enjoy great flexibility in modelling long-range 
dependencies and serve as the most basic component in the next- 
generation of visual recognition tasks (Chu et al., 2021). However, ViT 
faces challenges in terms of computational complexity when dealing 
with high-resolution images compared to natural language. Swin 
Transformer is present to improve this constraint by computed self- 
attention only within each spatially grouped non-overlapped sub-win
dow with the shifted window(Liu et al., 2021). Although this approach 
significantly reduces complexity, it sacrifices inter-window connections 
and results in uneven window sizes, limiting the receptive field and 
computational convenience. Thus, in order to capture both fine-grained 
and short-distance as well as long-distance and global information, we 
incorporate the locally-grouped self-attention (LSA) and global sub- 
sampled attention (GSA) modules from Twins-SVT (Chu et al., 2021) 
in our framework. 

The LGT model is structured hierarchically with four stages, each 
consisting of a Conditional Position Encoding (CPE) and Transformer 
block. Initially, image patches are flattened into 1D sequence using 
patch embedding and then input to the hierarchical stages. The hierar
chical stages were defined by different patch size. The definition of patch 
size is crucial for computation and feature extraction. Unlike ViT’s 
consistent patch size approach that leads to low resolution and a single- 
scale representation, Pyramid Vision Transformer (PVT) (Wang et al., 
2021) addresses this issue by incorporating pyramid construction 
through stacked layers with hierarchical patch sizes. In this study, we 
adopt the same architecture, designing four stages with patch sizes of 4 
× 4, 8 × 8, 16 × 16, and 32 × 32. within each stage, we include CPE and 
Transformer encoder. CPE is provide spatial position information to 1D 
sequence data. Position information is indispensable for the vision tasks, 
but self-attention operation in Transformers is permutation-invariant, 
which cannot leverage the order of the tokens in an input sequence. 
The previous position encoding contains absolute and relative ways with 
fixed or dynamics systems. While in this work, we employ CPE from the 

Table 1 
Remote sensing data source used in this study.  

Data source Band Resolution(m) Date 

Sentinel-1 GRD VV, VH 10 2018.7 
Sentinel-2 SR B2, B3, B4, B8, B11 10 2018.7–9 
Indices NDVI, NDWI, NDSI 10 2018.7–9 
HMA DEM elevation 8 2017  
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Conditional Position encoding Vision Transformer(CPVT)(Chu et al., 
2021b), which handles longer sequences in an inductive manner.. The 
CPE plugin is inserted in the middle of the Transformer encoder as a 
default choice (Fig. 2(b)). The Transformer encoder contains LSA and 
GSA(Fig. 2(a)).Each LSA is followed by a GSA. Residual connection(He 
et al., 2016) is applied around each of the two sub-layers, followed by 
layer normalization. The specific details of each block are provided 

below.. 
Patch embedding. In the initial stage, the input image X ∈ RH×W×C, 

where (H, W) represents the original image resolution and C denotes the 
number of channels, is split into HW

P2 patches. Here, p refer to the patch 
size (which is set to 4 in the first stage of this study), Subsequently, the 
flattened patches are processed through projections, resulting in 
embedded patches of size HW

P2 × C1. in the first stage of this work, C1 is set 

Fig. 1. The glacier outlines were used as ground truth during the model training. The background is Landsat 8 imagery and SRTM DEM.  

Fig. 2. The overall architecture of the proposed model. The first row of the middle part is the encoder, in which the feature map has been downsampling to size H
32×

W
32× 512, the second row of the middle part is the decoder in which the feature map has been upsampling to the original size and segmented by FRH module. (a) and 
(b) is the detail of the LGT and CPE respectively. (c) is the detail of the LGCB. 
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to 64. Consequently, we obtain the patch embedding, which is then 
ready for further input into the Transformer operation. 

Conditional Position Encoding (CPE). CPE(Fig. 2(b)) reshapes the 
flattened tokens X ∈ RB×N×C back to 2D image representation 
X′ ∈ RB×H×W×C, where B represents the batch size, N corresponds the 
number of sequence elements, (H, W) denotes the original size of the 
image, and C indicates the number of channels. Subsequently, the image 
undergoes a transformation using a function F , resulting in conditional 
positional encodings EB×H×W×C with the fixed size. The function F can 
be implemented as an efficient 2-D convolution with kernel k(k ≥ 3) and 
k− 1

2 zero paddings. Finally, the 2D image is reshaped into flattened to
kens, which serve as the input for the Transformer module. 

Locally-grouped Self-Attention (LSA). To efficiently model the 
data, the Local Self-Attention (LSA) approach divides the 2D images X ∈

RH×W×C into equally arranged m × n sub-windows(Fig. 2(a)). Within 
each sub-window, self-attention is calculated among the HW

mn elements to 
enable communication limited to the sub-window. Self-attention in
volves mapping a query and a set of key-value pairs to an output, where 
the query, keys, values (Q, K, V) and output are all vectors. The output 
is computed as a weighted sum of the values, with the weights deter
mined by a compatibility function of the query with the corresponding 
key (Vaswani et al., 2017). Specifically, the dot products of Q and K, 
which have the same dimension dk, are computed and divided by the 
scaling factor 

̅̅̅̅̅
dk

√
. A Softmax operation is then applied to obtain the 

weighted sum by multiplying it with V. The calculations are performed 
by organizing Q, K, and V into matrices. This computation can be rep
resented by Equation (4). 

Attention(Q,K,V) = softmax
(
QKT
̅̅̅̅̅
dk

√

)

V (4) 

in which the Attention(Q, K, V) is the output metric. A single self- 
attention is only calculated at one dimension(dmodel), which is less 
beneficial than computing self-attention in multi-shaped dimensions. 
Thus we present Multi-head attention, enabling effective communica
tion among diverse information.. Multi-head attention can be present in 
equations (5) and (6): 

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO (5)  

headi = Attention
(
QWQ

i , kW
k
i ,VW

V
i

)
(6) 

Where the corresponding dimension transformation parameter of (Q,

K, V) are the matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and 

WO ∈ Rdmodel×hdv (h is the times of dimension transform). We can express 

the total cost of the LSA as O
(

H2W2

mn d
)

, which is highly dependent on the Hm 

and W
n (defined as k1 and k2). Obviously, the computation will more 

efficient when k1≪H and k2≪W, which makes k1 and k2 are crucial 
parameters in this model. 

Global Sub-sampled Attention (GSA). To facilitate communication 
between sub-windows, the global attention layer is incorporated (Fig. 2 
(a)). In contrast to directly adding a standard global attention operation 
after the local layer we employed sub-sampled attention, inspired by the 
spatial reduction attention(SRA) of PVT, which reduces computation by 
reducing the spatial scale of two elements K, V of self-attention(Wang 
et al., 2021). Similarly, GSA employs a single representative to sum
marize the crucial information for each of the m × n sub-windows. This 
representative is used to interact with other sub-windows, serving as the 
K component in self-attention. Consequently, GSA effectively reduces 
the spatial scale of K in self-attention. The formulation of GSA is given by 
equations (7) and (8). 

GSA(Q,K,V) = Concat(head1, ..., headn)WO (7)  

headj = Attention
(
QWQ

j , SS(K)WK
j ,VW

V
j

)
(8) 

Where WQ
j , WK

j and WV
j are still the metric of dimension project(same 

as the ones in standing Multi-head attention). SS(K) means the Sub- 
Sampled K, which is related to the number of sub-windows. We 
reduce the cost of global communication from O(H2W2d) to 

O(mnHWd) = O
(

H2W2

k1k2
d
)

. 

Finally, we can summarize Transformer Encoder as equation (9): 

z⌢
l

ij = LSA
(
LayerNorm

(
zl− 1
ij

))
+ zl− 1

ij ,

zlij = FFN
(

LayerNorm
(

z⌢
l
ij

))

+ z⌢
l
ij,

z⌢
l+1

= GSA
(
LayerNorm

(
zl
))

+ zl,

zl+1 = FFN
(
LayerNorm

(
z⌢
l+1))

+ z⌢
l+1

,

i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}

(9) 

where ẑl
ij and ẑl+1 represent the output of LSA in sub-windows (i, j) 

and the GSA respectively, which refer to the feature maps of the input 
image. zl

ij and zl+1 represent the results of Feed-Forward Networks(FFN) 
(Vaswani et al., 2017). 

2.3.2. Decoder: Local-Global CNN Blocks (LGCB) 
LGCB(Wang et al., 2022b) contains a local and global branch for 

feature extraction and a Feature Refinement Head (FRH) for segmen
tation. The local branch utilizes a CNN to extract spatial information, 
while the global branch incorporates an attention layer to capture 1D 
information. Unlike the standard Transformer that solely relies on CNN 
for decoding, our design incorporates both CNN and attention layers in 
the global branch. The following sections provide a detailed introduc
tion to each block. 

Local-Global CNN Blocks (LGCB). The local branch of the model 
employs two parallel convolutional layers with kernel sizes of 3 and 1, 
followed by batch normalization operations, to extract local contextual 
information.. The global branch involves dividing the 2D image into 
sub-windows and performing multi-head attention within each sub- 
window. To capture the global interaction between sub-windows, a 
cross-shaped window context interaction module is introduced, which 
combines the results of pooling layers. Specifically, the cross-shaped 
window modules utilize horizontal and vertical average pooling layers 
to calculate the pixel-wise dependencies across windows, representing 
the horizontal and vertical relationships. The details can refer to Unet
Former (Wang et al., 2022b). 

Feature Refinement Head(FRH). To integrate the global–local and 
spatial-channel information in both the encoder and decoder, we 
employ the Feature Refinement Head (FRH) as the segmentation head. 
The FRH consists of spatial-wise and channel-wise representations. In 
the spatial branch, a depth-wise 3 × 3 convolution is used to generate a 
spatial-wise attentional map S ∈ Rh×w×1, where h and w represent the 
spatial resolution of the feature map. The channel branch starts with a 
global average pool to generate a channel-wise attentional map 
C ∈ R1×1×c, where c represent the channel dimension. Subsequently, 
two 1 × 1 convolutional layers are applied: the first reduces the channel 
dimension c by a factor of 4, and the second expands it back to the 
original dimension. Finally, the two attentional maps are fused through 
a summation operation to facilitate semantic segmentation. 

2.3.3. Loss function 
We adopt the Dice loss function, which has been extensively utilized 

in semantic segmentation tasks (Sudre et al., 2017). In such tasks, the 
learning process often encounters difficulties in distinguishing the 
foreground region from the background, resulting in incomplete or 
missing detection of the foreground. The Dice loss addresses this limi
tation (Milletari et al., 2016). In this work, the dice loss ld for the two 
class can be calculated as follow (10): 
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ld = 1 −
∑N

n pnrn + ε
∑N

n=1pn + rn + ε
−

∑N
n=1(1 − pn)(1 − rn) + ε
∑N

n=12 − pn − rn + ε
(10) 

Where rn and pn represent the reference and prediction respectively, 
∊ is a constant to avoid denominators of zero. 

3. Experiment results and discussion 

To evaluate the model performance, a series of experiments 
including the comparison of different models, model modules and test 
on different band combinations were set. Thus, this section contains the 
model implementation details, evaluation metrics and experiment 
results. 

3.1. Implementation details and evaluation metrics 

The dataset used in this study consisted of a total of 3024 image-label 
pairs, with each image and label resized to 512 × 512 pixels. All ex
periments are conducted on a single GeForce RTX 2080 Ti GPU. During 
the training process, we employed the AdamW optimizer with a learning 
rate of 1e-4 and utilized the cosine strategy to adjust the learning rate. 
The batch size was set to 4. 

To evaluate the performance of the model,the overall accuracy(OA), 
mean F1 score(F1) and mean intersection over union(mIoU) were 
employed as the evaluation metric: 

OA =
tn+ tp

tn+ tp+ fn+ fp
(11)  

F1 = 2
PR
P+ R

(12)  

IoU =
tp

tp+ fn+ fp
(13) 

Where tp, fp, tn and fn denote the number of true positives, false 
positives, true negatives and false negatives respectively, P = tp

tp+fp and 
R =

tp
tp+fn. 

3.2. Comparison between different models 

To compare the capability of CNN, Attention mechanism and 
Transformer to capture local and global information in glacier extrac
tion, the proposed model was evaluated against U-Net, DeepLab V3+, 
Attention DeepLab V3+, and Swin Transformer. U-Net has been previ
ously employed for single glacier ice and ocean segmentation (Baum
hoer et al., 2019; Mohajerani et al., 2019; Zhang et al., 2019). focusing 
on identifying the spectral and spatial heterogeneity of ice and ocean at 
the calving front of Greenland or Antarctic glaciers. In these work, the 
both low and high level local spatial information. was captured by 
symmetrical encoder-decoder architecture and CNN of U-Net. In 
contrast, DeepLab V3 + has been employed for delineating calving 
fronts of multiple Greenland glaciers using diverse datasets (Cheng 
et al., 2021; Zhang et al., 2021). DeepLab V3 + incorporates a decoder 
that combines low and high-level features from the encoder and utilizes 
Atrous Spatial Pyramid Pooling (ASPP) to handle multi-scale informa
tion and expand the receptive field. However, these methods primarily 
focus on extracting local information at the ice/ocean boundary. 
Attention DeepLab V3+, on the other hand, is designed to extract in
formation from wide-range mountain glaciers (Chu et al., 2022). Chu 
et al. introduced the Convolutional Block Attention Module (CBAM) as a 
parallel connection to the ASPP of DeepLab V3 + to selectively 
emphasize different regions of importance. Notably, none of the above 
methods consider global information. Therefore, we introduce Trans
former to glacier extraction. Vision Transformer (ViT) captures long- 
distance dependencies in image features through position embedding 
and multi-head attention. Swin Transformer further enhances ViT by 

employing hierarchical feature maps with different patch sizes in 
different stages and incorporating shifted windows attention within 
each Swin block, enabling it to handle large-scale images efficiently. 

The accuracy and extraction results of the compared models are 
presented in Table 3 and Fig. 3, respectively. Among the compared 
models, U-Net exhibits the lowest performance, while DeepLab V3 +
demonstrates a significant improvement of 27.4% in OA compared to U- 
Net. The glacier area extracted by U-Net shows fragmentation, as indi
cated by the red frame in Fig. 3(b) for the second and third rows. In 
contrast, DeepLab V3 + produces more contextually coherent results, 
reflecting the expanded receptive field achieved through atrous convo
lution. Furthermore, the inclusion of an attention layer further improves 
the mean accuracy by 0.017 for DeepLab V3 +. Fig. 3(d) illustrates that 
Attention DeepLab V3 + sporadically detects glacier patches missed by 
DeepLab V3 +. However, all the results of the above CNN-based models 
exhibit spatial discontinuities around the marginal regions of the glacier 
area. While the Transformer model enables a more comprehensive 
extraction of the glacier area and also further enhanced the mean ac
curacy of Attention Deeplab V3 + by 0.025, as depicted in the red frame 
of the first row in Fig. 3(e) and Table 2, indicating its capability to 
capture long-distance image information. Despite this, all the models 
still exhibit vague and coarse details of the glacier edge. In contrast, our 
proposed model achieves both a complete glacier area and clear edge, as 
illustrated in the red frame of the first row in Fig. 3(f). The evaluation 
results in Table 2 also confirm the superior performance of our proposed 
model. 

3.3. Ablation study 

To evaluate the performance of LSA and GSA, CPE and LGCB, we 
conduct a series of ablation experiments. The results are shown in 
Table 3. 

Locally-grouped self-attention (LSA) and Global sub-sampled 
attention (GSA) We evaluate the performance of the different combi
nations of LSA and GSA in each stage of encoder. The experiments were 
performed using a U-Net architecture with a ResNet18 backbone. The 
results, as shown in Table 3, indicate that models employing pure Global 
or Local attention (LL, LL, LL, LL and GG, GG, GG, GG) performed 
poorly. This can be attributed to the limited capacity of capturing only 
local information and having a small receptive field. On the other hand, 
the interleaved combination of global and local attention (LL, LG, LG, 
GG) demonstrated relatively higher precision, while the global–local 
combination in each stage (LG, LG, LG, LG) yielded the best overall 
performance. 

Local-Global CNN Block(LGCB). We conducted ablation experi
ments to evaluate the performance of the encoder using three different 
decoders: pure CNN, Transformer, and our proposed LGCB. These ex
periments were conducted using the U-Net architecture with the same 
encoder as LGT. The results clearly indicate that the CNN decoder 
achieved the lowest performance. While the Transformer decoder 
showed a slight improvement in precision, it came at the cost of 
significantly higher parameters. Therefore, considering both precision 
and efficiency, LGCB emerged as the best decoder in this experiment. 

Conditional position encoder (CPE) The effectiveness of the CPE is 
proven by comparing the original position encoding (PE) in Vision 
Transformer (Dosovitskiy et al., 2020). The utilization of CPE instead of 

Table 2 
Experiment accuracy of different models.   

mIoU F1 OA 

U-Net  0.461  0.612  0.725 
DeepLab V3+ 0.673  0.816  0.924 
Attention DeepLab V3+ 0.702  0.822  0.960 
Swin Transformer  0.718  0.829  0.962 
Our proposed model  0.726  0.843  0.972  
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PE leads to an increase of 0.015 in the average accuracy of mIoU, F1, and 
OA. 

3.4. Contribution of different band combinations 

To investigate the effect of different band combinations, the input 
bands are divided into four different groups, namely A (‘VV’, ‘VH’ from 
Sentinel-1GRD), B (‘B2′, ‘B3′, ‘B4′, ‘B8′ and ‘B11′ from Sentinel-2 SR), C 
(‘ndvi’, ‘ndsi’ and ‘ndwi’) and D (‘elevation’ from HMA DEM). In order 
to examine the effectiveness of various data sources, we excluded the 
combination of group B and C since group C is derived from the bands in 
group B. All other permutations of the four groups were tested. Fig. 4 
presents the results obtained by evaluating all band combinations on the 
five models. 

The accuracy representation in Fig. 4 is the average of mIoU, F1 and 
OA of each epoch during the training. Except for the U-Net, the 
remaining models exhibit consistent accuracy rankings across different 
band combinations. The accuracy of data combinations in our proposed 
model fluctuates between0.731 and 0.815. Among the combinations, 
AD bands perform the worst with an accuracy of 0.763, while the other 
combinations show a small range of variation (0.026). The contribution 
of Sentinel-2 bands and image band indexes was assessed by comparing 

Table 3 
Ablation study of LSA and GSA, LGCB and CPE. In the LSA and GSA part, L 
represents LSA and G represent GSA. LG means the specific stage contains one 
LSA and one GSA. Training time is the time for one batch.  

Module Method mIoU F1 OA Parame- 
ters(M) 

Training 
time 
(Mins) 

LSA and 
GSA 

(LG, LG, LG, LG) 
+ ResNet18  

0.624  0.704  0.921  40.1  6.0  

(LL, LG, LG, GG) 
+ ResNet18  

0.612  0.675  0.914  31.2  5.4  

(GG, GG, GG, 
GG) + ResNet18  

0.607  0.642  0.832  25.6  5.8  

(LL, LL, LL, LL) 
+ ResNet18  

0.584  0.613  0.784  17.2  5.2 

LGCB LGT + ResNet18  0.624  0.704  0.921  40.1  6.0  
LGT + ResNet50  0.687  0.769  0.935  50.1  6.0  
LGT + LGT  0.730  0.845  0.972  156.2  7.5  
LGT þ LGCB 
(Our proposed)  

0.726  0.843  0.972  107.5  6.5 

CPE PE + LGT +
LGCB  

0.688  0.725  0.963  105.5  6.5  

Fig. 3. The visualization results of U-Net, DeepLab V3+, Attention Deeplab V3+, Swin Transformer and our proposed model from (a) to (f) respectively. The four 
columns represent four regions. The base map of the figure in the first row is the false color composition of SWIN, NIR and green bands from Sentinel-2 imagery, the 
red line in it is the glacier outline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ABD&ACD and AB&AC. The ABD combination demonstrates a higher 
accuracy by 0.008 compared to ACD, while AB surpasses AC by 0.015. 
This suggests that the original Sentinel-2 bands contribute more to 
glacier identification than the band indices. Furthermore, comparing AC 
(averaged accuracy = 0.821) and AD (averaged accuracy = 0.763) re
veals that image band indexes have a greater contribution than elevation 
data. Additionally, the experiments confirm the contribution of Sentinel- 
1 and Sentinel-2 data, the two primary data sources, by comparing BD 
(averaged accuracy = 0.837) and AD (averaged accuracy = 0.763). The 
results show a significant accuracy increase of 0.74 with the inclusion of 
Sentinel-2 imagery. 

The visualization results are presented in Fig. 5. It is evident that the 
results of AD (Fig. 5(b)) exhibit incomplete and fragmented glacier 
areas, indicating that the combination of Sentinel-1 and elevation data 
fails to capture the complete extent of glaciers. However, when Sentinel- 
2 data is added, as seen in Fig. 5(c)-(d), the misclassifications in the red- 
framed regions of the first, second, and fourth rows gradually diminish. 
This improvement is observed in the results of AB, BD, ABD, and ABCD, 

highlighting the significant contribution of Sentinel-2 bands in reducing 
misclassifications and enhancing the completeness of glacier 
identification. 

3.5. The model’s response to the heterogeneity data. 

In order to extract glaciers in diverse conditions, we integrate 
Sentinel-1 and Sentinel-2 data, which exhibit distinct heterogeneity. In 
this section, we assess the capability of our proposed model to handle 
multi-source heterogeneous data by evaluating its performance on these 
two datasets under specific and typical glacier conditions. The specific 
glacier environment includes factors such as snow cover, debris cover, 
misclassification of water, and image cloud. In the selected region, the 
glaciers are minimally affected by debris, and the optical image chosen 
has a cloud cover of less than 5%. Therefore, we examine the circum
stances of snow-covered glaciers and lake-terminus glaciers. 

As illustrated in the third row of Fig. 6(a)-(b), the results obtained 
from Sentinel-2 imagery misidentify nearly all snow-covered areas as 

Fig. 4. Experimental results for different band combinations of U-Net, DeepLab V3+, Attention DeepLab V3+, Swin Transformer and our proposed model, where A is 
‘VV’ and ‘VH’; B is ‘B2′, ‘B3′, ‘B4′, ‘B8′ and ‘B11′; C is ‘ndvi’, ‘ndsi’ and ‘ndwi’; D is ‘elevation’. The left vertical axis is the average of mIoU, F1 and OA. The right 
vertical axis is the average value of accuracy. The average value of each combination is shown following the dotted line. 
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glaciers. Similarly, in the experiments using Sentinel-2 data, the lake 
area is misclassified as a glacier, as shown in the third row of Fig. 6(c)- 
(d). However, the results obtained from Sentinel-1 data only misjudge a 
small portion of the snow or lake. This observation highlights the higher 
potential of Sentinel-1 imagery in accurately extracting glacier outlines 
under specific conditions. 

However, when considering glacier extraction in general environ
ments, as depicted in Fig. 6(e), the results obtained from Sentinel-2 data 
exhibit clear edges and more accurate delineation of glacier areas. This 
prompted us to examine the results obtained from both Sentinel-1 and 
Sentinel-2 data (the first row of Fig. 6). Under specific circumstances, as 
shown in the first line of Fig. 6(a)-(d), the combined results of the two 
datasets demonstrate a certain degree of misclassification of snow or 
lakes, with the misclassified areas falling between the results of Sentinel- 
1 and Sentinel-2 data. A similar phenomenon is observed under general 
circumstances, as depicted in the first row of Fig. 6(e), where the results 
from the two datasets exhibit clear edges and complete areas, but also 

include misjudged areas extracted from Sentinel-1 data. Thus, the 
combination of the two datasets does not clearly reflect the specific 
advantages of each dataset, indicating that our proposed model fails to 
distinguish the different information obtained from the concatenation of 
multi-source images. This further reveals that the proposed model is not 
sufficiently sensitive to heterogeneous features, suggesting that it cannot 
overcome the impact of complex terrain on glacier extraction. There
fore, in future work, we will consider the adoption of a dual-branch 
processing approach tailored to specific data. 

3.6. Model efficiency 

The parameter quantity and training time for a specific module are 
presented in Table 2. The efficiency and accuracy of the encoder ar
chitecture are evaluated using different interleaved methods of LSA and 
GSA. As shown in Table 2, compared to (LL, LG, LG, GG), our proposed 
design (LG, LG, LG, LG) achieves a marginal accuracy improvement of 

Fig. 5. The visualization results of seven band combinations on our proposed model, which represent AD, ACD, AC, AB, BD, ABD and ABCD from (a) to (h). The base 
map of the figure in the first row is the false color composition of SWIN, NIR and green bands from Sentinel-2 imagery, the red line in it is the ground truth of the 
glacier outline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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0.07 at the cost of a significant increase in parameters (8.9 M) and 
training time. This suggests that while incorporating both high and low- 
level image information in the fusion of local and global attention 
contributes less to accuracy, it significantly increases model complexity. 
Therefore, future research should focus on more efficient strategies for 
capturing local and global information. 

4. Conclusion 

In this study we have presented an automated method of glacier 
extraction based on the Transformer model. The model involves a 
decoder with Local-global Transformer and decoder with dual branches 
of CNN and Attention, in which the idea of combining the global–local 
information is both involved. The Sentinel-1, Sentinel-2, HMA and 
SRTM DEM data sets were used. The model was trained by the glaciers 
area of the Qilian Mountains extracted semi-automatically based on GF 
data. We demonstrated the best accuracy of 0.972 among all other 
models and the necessity of each module in our proposed model through 
the experiments on different models and ablation studies. The method 
we propose can enhance the precision of automatically extracting 
glacier, while also demonstrating the effectiveness of combining data 
from various acquisition methods. Our experiments showed that optical 
imagery plays a significant role in glacier extraction, and SAR data can 
differentiate snow-covered glaciers and glacier-terminating lakes. 
Nevertheless, our proposed model is not sensitive for the features 
extracted from heterogeneous data, thus the dual-branch processing 
approach tailored to specific data is considered in the future. Moreover, 
the Transformer-based model makes the local–global information 
extraction is time-consuming, the further improvement should focus on 
the efficient interaction of local–global information. 
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