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Abstract—Multispectral images play a crucial role in environ-
mental monitoring or ecological analysis for their large scope,
quick acquisition, and big data. With the rapid development
of technology and increasing demand, very high-resolution mul-
tispectral images have attracted a lot of attention these days.
However, due to sensor equipment and the imaging environment,
the spatial resolution of multispectral images is always restricted.
With the help of panchromatic images, pan-sharpening is a
very important technique to enhance the spatial details of
multispectral images. In this study, we proposed a knowledge
optimization-driven pan-sharpening network with normalizer-
free group ResNet prior, called PNXnet, which is unfolded from
a physical knowledge optimization-driven variational model. We
solved the memory overhead brought by the traditional ResNet
relying on batch normalization. Results on four sensors show
that high quantitative indexes and natural visual effects have
verified the reliability of PNXnet. Focusing on the NIR band
where spatial details are hard to be injected, we compared the
Normalized Difference Vegetation Index (NDVI) generated from
the fused results, the estimated NDVI shows a high consistency to
the ground truth with R2 above 0.91. Besides, we also compared
the model generation. Furthermore, low model complexity and
quicker computational speed make the daily application of
PNXnet possible.

Index Terms—Pan-sharpening, Deep learning, Knowledge un-
folding, Normalization, Satellite imagery

I. INTRODUCTION

REMOTE sensing technique, with the merit of huge ob-
servation scope, abundant information, and fixed revisit

period, has been of extraordinary significance to many fields,
including hydrometeorology [1], agriculture [2]–[4], and en-
vironmental monitoring [5]–[7]. Meanwhile, images collected
by remote sensing satellites always represent Earth’s surface
from two aspects, namely spectral and spatial dimensions.
Spectral information is beneficial to recognize ground objects
by representing physical property while spatial detail makes
great sense to finer application, both of which are of great
importance [8].
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Due to the technical limitation of sensors, it is difficult for
satellites to capture images with high resolution in both spatial
and spectral dimensions [9]–[11]. However, most satellites
collect data in two modalities: high-resolution panchromatic
(PAN) images with low spectral resolution and low-resolution
multispectral (MS) images with high spectral resolution [12]–
[14]. To combine the advantage of both data and produce high-
resolution products for further applications, pan-sharpening
becomes more and more popular in remote sensing.

In the past few decades, many traditional methods have
been developed to solve pan-sharpening, which can be divided
into four categories: 1) component substitution-based methods.
The main idea of component substitution-based methods is
to substitute the PAN images for the low-resolution spatial
component of MS images. Note that the spatial components
are always extracted by methods based on intensity-hue-
saturation (IHS) [15], principal component analysis (PCA)
[16], Gram-Schmidt transformation (GS) [17], and Brovey
transformation [18]. 2) multi-resolution analysis-based meth-
ods. In these methods, MS and PAN images are decomposed
into multiple scales, and the spatial information of PAN
images is injected into the same-scale MS images. Laplacian
pyramids [19], wavelets [20], contourlet [21], and curvelet
transformations [22] are all classified into this group. 3) hybrid
methods. This category of methods combines the advantages
of both component substitution and multi-resolution analysis
methods by merging wavelet-based methods with IHS or PCA
methods based on the idea of improving spatial details of
the fused image. Substitute Wavelet Intensity (SWI) [23],
Additive Wavelet Luminance Proportional (AWLP) [24], and
GS-Wavelet [25] are some typical approaches in this group.
4) variational optimization-based methods. Considering pan-
sharpening task as an ill-posed optimization problem which is
searching the best estimation of the ideal high-resolution MS
images, methods based on variational optimization are also
proposed to fuse PAN and MS images, such as P+XS [26], a
new pan-sharpening algorithm based on Total Variation (TV)
[27], and Local Gradient Constraints (LGC) [28].

Benefitting from the strong nonlinear learning ability, deep
learning is also utilized to address pan-sharpening and has
achieved good performance [29]–[34]. Inspired by a three-
layered convolutional neural network proposed in single image
super-resolution (SRCNN), Masi et al. regarded the pan-
sharpening task as a special form of image super-resolution
and proposed a pan-sharpening neural network (PNN) [35].
Combining GS transform with spatial super-resolution CNN,
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TABLE I: Characteristics of satellite data used in this study.

QuickBird WorldView-2 Gaofen-2 Gaofen-1

MS Channel Number 4 8 4 4

Spatial Resolution 0.61 m / 2.44 m 0.46 m / 1.85 m 0.81 m / 3.24 m 2 m / 8 m

Temporal Resolution 1 to 6 days 1.1 to 3.7 days 5 days 4 days

Swath Width 16.5 km 16.4 km 45 km 60 km

Available Time 2001 to 2014 2009 to now 2014 to now 2013 to now

Acquisition Area Shenzhen, China San Francisco, USA Nanning, China Qujing, China

Nanchang, China Zhaotong, China

Yichang, China Nantong, China

Zhong et al. [36] put forward a new framework to enhance the
spatial details in the fused images. As the deeper networks are,
the stronger learning ability they have, residual learning is also
employed to improve CNN-based pan-sharpening [37], [38].
Wei et al. [39] employed a global residual skip to improve the
spatial details. Yang et al. [40] extracted finer textures from
high-pass features using ResNet [41]. In 2018, considering
multi-scale features in remote sensing images, Yuan and Wei
et al. [42] further proposed a multi-scale and multi-depth
CNN for image pan-sharpening. To further improve CNN’s
modeling capability for pan-sharpening, several strategies are
put forward, such as pyramid network [43], adaptive weight
[44], gradient prior [45], two-stream network [46], etc.

With great learning capacity from data, deep learning has
also been used to achieve unsupervised pan-sharpening [47]–
[51]. Luo et al. [47] proposed a new loss function where the
input MS and PAN images are used to enhance the spatial
constrains and spectral consistency, respectively. Ciotola et
al. [49] further improved this training strategy with a target-
adaptive operating modality. Seo et al. [48] combined un-
supervised learning with registration learning to implicitly
learn the registration between PAN and MS images. Zhou et
al. [50] designed a generative adversarial network based on
auto-encoder and perceptual loss to achieve unsupervised pan-
sharpening. Liu et al. [51] employed a two-stream generator
with a dual discriminator to extract features from the PAN and
MS images.

Though CNN-based algorithms have achieved great suc-
cesses in pan-sharpening, the fact is there are still some prob-
lems to be solved. One is that ResNets are always utilized with
batch normalization (BN), and the other is the interpretability
of deep learning. As for BN, on the one hand, without BN,
the training of CNN would be unstable, while, on the other
hand, BN incurs computation memory overhead and breaks
the independence of distributions between training examples
within a batch. Recently, several works have tried to replace
BN. A part of them is using alternative normalization [52],
and another line of these works looks for eliminating layers
that normalize hidden activations entirely [53]. Nevertheless,
they more or less degraded generalization or added compute
costs in tests [54].

As for the interpretability of deep learning, most researchers
are trying to combine CNNs with physical model-driven
methods [55], [56], where CNNs always play a role as priors.
While they mostly break the end-to-end running mode of

CNNs, which ensures that deep learning can achieve flexible
and generalizable applications.

In this paper, an end-to-end physical optimization-driven
CNN with group ResNet prior is proposed and a normalizer-
free strategy that keeps stable generalization with low compute
costs is also presented, which is called PNXnet. To keep the
similar standard initializations as BN, we build a normalizer-
free ResNet by directly introducing two variables to simulate
means and variances in ResNet, which decrease the memory
cost brought by BN layers. Furthermore, rather than alternately
running a variational model and CNN, an optimization-based
pan-sharpening model is unfolding into CNN with normalizer-
free ResNet-based multispectral prior. The proposed CNN
updates the fused MS image in an end-to-end manner. The
contributions are as follows.

• Focusing on pan-sharpening, this paper unfolds a vari-
ational model into end-to-end CNN with the help of
knowledge optimization, which brings physical inter-
pretability to deep learning-based algorithms and keeps
the data-driven training mode.

• Neither directly employing BN layers in ResNet nor com-
pletely abandoning normalization, we introducing two
variables to simulate means and variances layer by layer,
which could achieve similar standard initializations as BN
layers and doesn’t require more memory cost to save
intermediate features. Furthermore, group convolutions
are also utilized to reduce the network parameters.

• Data captured by four satellites are tested, includ-
ing WorldView-2, QuickBird, Gaofen-2, and Gaofen-1,
which prove that the proposed model can handle various
data from different satellites. Besides, focusing on the
NIR band where spatial details are hard to be injected,
we also compared the NDVI generated from the fused
results.

• The proposed PNXnet achieves better performance with
the state-of-the-art methods but acquires less parameters
and running time.

The remaining part of the paper is organized as follows. Sec-
tion 2 describes the degradation model and unfolds the varia-
tional pan-sharpening algorithm into knowledge optimization-
driven PNXnet. Section 3 shows the experiments on data
from four satellites and presents some discussions. Finally,
conclusions are given in Section 4.
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Fig. 1: The framework of the proposed PNXnet.

II. MATERIAL AND METHODS

A. Data sources
1) Satellite remote sensing data: In this study, remote

sensing data collected by four satellites are used, including
QuickBird, Gaofen-2, WorldView-2, and Gaofen-1, as shown
in Table I.

QuickBird satellite was launched on October 18, 2001. it
acquires a PAN channel (450-900 nm) and MS images with
four channels in the visible and Near-InfraRed (NIR) wave-
length range: Blue (450-520 nm), Green (520-600 nm), Red
(630-690 nm) and NIR (760-900 nm). The spatial resolution
of the PAN channel is between 61 (at nadir) and 72 cm (25°
off-nadir), and the MS images are with a resolution between
2.44 and 2.88 m (25° off-nadir).

On October 6, 2009, the WorldView-2 satellite was launched
by Maxar Technologies, then known as DigitalGlobe, which
collects data with one PAN channel (450-800 nm) and eight
MS channels. The acquired PAN channel is with a resolution
of 0.46 m and the MS channels are with 1.85 m resolution.
Besides the common Blue (450-510 nm), Green (510-580 nm),
Red (630-690 nm), the MS channels also involve Coastal-Blue
(400-450 nm), Yellow (585-625 nm), Red-Edge (705-745 nm),
NIR1 (770-895 nm), and NIR2 (860-1040 nm).

Equipped with two PAN/MS cameras, the Gaofen-2 satellite
was launched on August 19, 2014, and capable of collect-
ing images with a ground sampling distance of 0.81 m in
PAN channel (450-900 nm) and 3.24 m in the four MS
channels, including Blue (450-520 nm), Green (520-590 nm),
Red (630690 nm), and NIR (770-890 nm). And Gaofen-1
satellite, which was launched on April 26, 2013, shares all the
similar characteristics to Gaofen-2 except the coarser spatial
resolution, 2 m for the PAN channel and 8 m for the MS
images.

2) Data Location: In this paper, remote sensing data from
eight cities in China and USA are collected for study. Table I
lists the location of the selected data from different satellites.

The QuickBird data are selected from three cities in China,
including Shenzhen, Nanchang, and Yichang. Data in Shen-
zhen and Nanchang covers the urban area, where roads and

buildings are the main parts in Shenzhen while a variety of
land-use can be found in Nanchang covering lakes, croplands,
rivers, and buildings. And data from Yichang mainly encom-
passes mountains, buildings, and rivers. As for the Gaofen-
2 satellite, we choose Nanning which includes very diverse
topography as the study area, including vegetation, land, and
waters. In the USA, WorldView-2 data covering San Francisco
is selected in this study. San Francisco is a coastal city in
Northern California with an area of 121.4 km2, which is one
of the world’s top travel destinations with various buildings,
hills, bays, trees, and urban. For the Gaofen-1 satellite, we
select the images covering Qujing, Zhaotong, and Nantong, in
China to build the fourth data set. Qujing and Zhaotong are
both cities in Southwest China and are covered by mountains.
And Nantong is in East China near the ocean.

The selected images acquired by four satellites cover a
variety of topography makes great sense to fully verify model
generalization. All the results and discussions are based on the
mentioned-above data sets.

B. Methods

PNXnet is proposed to fuse the rich spectral information
in MS images and the fine spatial details in PAN images
for higher-resolution multispectral data in this study. Inspired
by solving the optimization problem based on a physical
degradation model, we roughly fuse the low-resolution MS
images and high-resolution PAN images by a physical inverse
block (PIB), and then we feed the intermediate results and
original images into the recurrent optimization-driven blocks
(ROB), which equipped with normalizer-free ResNet for prior
representation and group convolution for model lightweight.
Furthermore, the whole network is end-to-end. Details of our
proposed PNXnet are illustrated in Fig. 1.

1) Proposed Knowledge Optimization-driven Pan-
sharpening Networks: In pan-sharpening, our objective
is to recover the ideal MS images with high spatial resolution
from low-resolution MS images and high-resolution PAN
images. We assume that X ∈ RW×H×C represents the
desired high-resolution MS images, where C is the number
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Fig. 2: The proposed ROB. We replace all matrices in Eq. 4
with CNN-based modules but follow the same data flow.

of the spectral channels, and W and H are the width and
height, respectively, P ∈ RW×H×1 represents the PAN image
with the same spatial resolution as X but only one band,
and M ∈ Rw×h×C denotes the low-resolution MS image.
According to the satellite imaging, the degradation model is
established as:

P = XΦ

M = DX
(1)

With the help of the degradation model, pan-sharpening is
to figure out the closest approximation of X , which can be
regarded as an optimization problem, i.e.,

X̂ = arg min
X

1

2
‖P −XΦ‖22 +

1

2
‖M −DX‖22 +λR(X) (2)

Employing the half-quadratic splitting method with an aux-
iliary variable Z, a new cost function is derived:

Lµ (X,Z)=
1

2
‖P−XΦ‖2+ 1

2
‖M−DX‖2+µ‖Z−X‖2+λR(Z)

s.t. Z = X
(3)

where µ is a penalty parameter. Based on the half-quadratic
splitting method, Eq (3) can be split into two subproblems
which allows us to address the data fidelity term and the prior
term separately:

X̂ = arg min
X

1

2
‖P−XΦ‖2+

1

2
‖M−DX‖2+µ ‖Z−X‖2

Ẑ = arg min
Z

1

2
‖Z −X‖22 + λ

µR(Z)

(4)

Considering the X-subproblem, the approximation would be
updated by the gradient descent algorithm:

X̂k+1 =Xk−ε
(
XkΦΦT+DTDXk−PΦT−DTM+µXk−µZk

)
= δXk−εXkΦΦT−εDTDXk+εPΦT+εDTM+εµZk

(5)
where δ = 1− εµ, and ε is the optimization stride. As shown
in Fig. 2, we unfold the variational solution into CNN, namely
recurrent optimization-driven blocks.

Fig. 3: The proposed Physical Inverse Block.
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Fig. 4: Two ResNet-based blocks. Left is the original residual
block with BN, called BN-ResB. Right is the normalizer-free
residual block, called NF-ResB, where ”WS-Conv” denotes
weight-scaled convolutions. The number after “Conv” is the
kernel size.

With the same calculation process as the spectral response
function, 1 × 1 convolutions are employed to perform Φ
and ΦT . Meanwhile, D is replaced with a down-sampler,
which can be decomposed into 2D convolutions and average-
pooling operators, and DT is performed by 2D deconvolutions.
PriorNet is the proposed Normalizer-free ResNet for prior
representation to solve Z-subproblem. All hyper-parameters
are adaptively learned by channel attention [57], [58]. To
initialize the X0 more closed to ideal X , we propose a physical
inverse block to extract and fuse the spectral information and
spatial information from M and P , as shown in Fig. 3.

In formulation, PIB can be represented as:

X0 = Fusion(Cat(PΦT θSpa, D
TMθSpe)) (6)

where Cat(·) denotes concatenation, Fusion(·) represents a
1×1 convolution to fuse the extracted spectral information and
spatial information. θSpa and θSpe are two hyperparameters
to control the information weight scale in subsequent fusion,
which are learnable in training. With X0 initialized, the ROB
can update Xk recurrently until the results are optimal, which
is supervised by an `1 loss function, defined as

∣∣∣X̂ −X∣∣∣.
To update Xk, the most important problem is to update

Zk involved the prior term as shown in Eq (4). Details are
described in the next sub-subsection.
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TABLE II: Quantitative assessment on the QuickBird and WorldView-2 data. The best performance is shown in bold and the
second best is underlined.

QuickBrid WorldView-2

Methods CC PSNR SSIM SAM ERGAS CC PSNR SSIM SAM ERGAS

BDSD 0.9351 41.8275 0.9431 2.2678 2.0736 0.9262 33.3169 0.8931 7.4913 5.2809

PRACS 0.9511 44.2434 0.9566 1.8110 1.4983 0.9265 33.7069 0.8690 6.5751 5.2193

GSA 0.9389 42.2266 0.9444 2.0716 1.9624 0.9398 33.9905 0.8990 6.4442 4.7628

ATWT-M3 0.9355 42.6250 0.9392 2.3004 1.8965 0.9115 31.8137 0.8283 6.8969 6.1430

MTF-GLP-HPM 0.9422 42.9411 0.9534 1.8531 1.7386 0.9268 33.4101 0.8977 5.9326 10.5219

AWLP 0.9239 41.5724 0.9382 2.0083 1.9605 0.9403 34.0049 0.9069 6.0190 4.7664

TV 0.9485 41.9099 0.9477 2.1589 1.9592 0.9162 32.2562 0.8435 8.4302 5.6334

PanNet 0.9436 43.7540 0.9638 1.8252 1.4921 0.9361 33.8900 0.8970 6.1223 4.7344

DRPNN 0.9302 42.5424 0.9443 2.0893 1.7648 0.9431 34.6462 0.9122 5.9716 4.4121

MSDCNN 0.9542 44.6686 0.9633 1.6680 1.4062 0.9443 34.7514 0.9143 6.0456 4.4042

ResTFNet 0.9558 44.8494 0.9658 1.6222 1.3814 0.9608 36.0258 0.9415 4.7843 3.7341

PNXnet 0.9622 45.4862 0.9651 1.5361 1.3112 0.9618 36.1242 0.9417 4.8701 3.6651

Fig. 5: Difference between standard convolution and group
convolution.

2) Normalizer-Free ResNet for Prior Representation: In
traditional optimization algorithms, the prior in pan-sharpening
is always used with regularization, such as total variation,
non-Gaussianity, and nonlocal self-similarity. Actually, the Z-
subproblem with priors in Eq (4) is a proximal optimization
problem, which should be solved by a proximal operator.
Recently, with an ideal performance of modeling nonlinearity,
ResNets are proved to be capable to learn priors implicitly
[59], as shown in the left of Fig. 4a.

Let xli present the i-th batch features after l-th residual
block, and xl+1

i = xli + f(xli) always holds in residual
blocks, where f(·) denotes the residual branch. Focusing on
the variance of the training example in ResNet, we can find
that the variance of the activations before and after the residual
block satisfy:

Var(xl+1
i ) = Var(xli) + Var(f(xli)) (7)

In BN-ResB, with the help of Batch Normalization,
Var(f(xli)) is very close to 1. So, if Var(x0i ) is assumed to be

1, the variance Var(xli) ≈ l, which ensures the controllability
of BN and becomes easier to be initialized [60].

With BN and residual mapping, ResNets truly achieve good
performance in image restoration. Meanwhile, BN also incurs
computation memory overhead and breaks the independence
of distributions between training examples within a batch. To
replace BN in ResNet, in this paper, we utilize NF-ResB to
achieve prior representation, as shown in Fig. 4b. Firstly, the
weights of original convolution are all scaled-standardized:

Ŵi,j = γ ·
Wi,j − µWi,·

σWi,·

√
N

(8)

where N is the number of weights, σWi,· and µWi,· are the
standard deviation and mean of the i-th row in the kernel, γ is
a constant. For networks with ReLU as activation functions,
it implies that the outputs g(x) = max(x, 0) will be sampled
from the rectified Gaussian distribution with variance σg2 =
(1− 1/π)/2. A weight-scaled convolution with ReLU can be
written as z = Ŵg(x). With scaled-standardized weights, the
variance Var(z) = γ2σg

2. And when we set γ = 1/σg =√
2/
√

1− 1/π, the variance Var(Ŵg(x)) = 1 always holds,
which also indicates that if we build a residual branch f(·)
with weight-scaled convolutions, the variance Var(f(x)) =
Var(x) is satisfied too.

With good variance preserving of weight-scaled convolu-
tions, we change the ResNet from xl+1

i = xli + f(xli) into
xl+1
i = xli +αf(xli/βl), where α denotes the rate of variance

growth, and βl is fixed as
√

Var
(
xli
)
. In this way, the variance

Var
(
xl+1
i

)
will be changed into:

Var(xl+1
i ) = Var(xli) + α2Var(f(xli/βl))

= Var(xli) + α2Var(xli)/βl
2

= Var(xli) + α2

(9)

With the same assumption Var(x0i ) = 1, the variance in
NF-ResNet satisfy:

Var(xli) = 1 + lα2 (10)
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(a) LR MS (b) HR PAN (c) Ground Truth

(d) BDSD (e) PRACS (f) GSA (g) ATWT-M3

(h) MTF-GLP-HPM (i) AWLP (j) TV (k) PanNet

(l) DRPNN (m) MSDCNN (n) ResTFNet (o) PNXnet

Fig. 6: Pan-sharpening results on QuickBird images. Enlarged views are shown in yellow and red boxes. The first row shows
input data and ground truth. Row 2 to 4 present the results of comparison methods and the proposed PNXnet.

Eq (10) has a similar variance growth with BN-ResNet
which is just multiplied with α2. With such a strategy, we
could build a ResNet without BN but with similar variance
growth as BN-ResB, which keeps the strong prior learning
ability of ResNet but does not introduce more computational
cost. In this study, we employ the normalizer-free ResNet con-
sisting of three NF-ResBs to achieve the prior representation
implicitly.

3) Group Convolution for Model Lightweight: CNN-based
prior representation achieves superior to single traditional prior
with explicit formulas, while it also costs more computation.

Let x be I-channel input features to a convolutional layer,
and z denotes the corresponding O-channel output features.
Standard convolutional layers can be defined as:

zj =

I∑
i=1

xi ∗W i,j (11)

where 1 ≤ j ≤ O, W i,j denotes the convolutional kernel
with the size of k × k. So, the number of W to gain z from
x is I × O, and the number of weights is I × O × k × k.
When we build a very deep CNN, superabundant convolutions
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(a) LR MS (b) HR PAN (c) Ground Truth

(d) BDSD (e) PRACS (f) GSA (g) ATWT-M3

(h) MTF-GLP-HPM (i) AWLP (j) TV (k) PanNet

(l) DRPNN (m) MSDCNN (n) ResTFNet (o) PNXnet

Fig. 7: Pan-sharpening results on WorldView-2 images. Enlarged views are shown in yellow box. The first row shows input
data and ground truth. Row 2 to 4 present the results of comparison methods and the proposed PNXnet.

will generate heavy computational costs, especially employing
deep CNN iteratively [61]–[63].

As for a group convolutional layer, it takes I/G input
channels to produce O/G output channels at each time, and
differences between standard convolution and group convo-
lution are shown in Fig. 5. Note that there are G-group
convolutions in one layer. Group convolution can be defined
as:

zjg =

I/G∑
i=1

xi ∗ W̃ i,j
g (12)

where 1 ≤ g ≤ G, W̃ i,j
g denotes the convolutional kernel with

the size of k × k to produce the g-th group feature. So, the
number of W̃g to gain zg from xg is I

G ×
O
G , and the total

number of weights is I
G ×

O
G ×k×k×G, which is reduced by

a factor G than standard convolution. In this study, because of
recursively performing optimization stages, group convolution
is utilized to reduce the model weights, where G is set to 4.

III. RESULTS AND DISCUSSION

As mentioned in Section II-A, data acquired by QuickBird,
WorldView-2, Gaofen-2, and Gaofen-1 sensors are used in this
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(a) MUL (b) PAN (c) Original NDVI

(d) BDSD (e) PRACS (f) GSA (g) ATWT-M3

(h) MTF-GLP-HPM (i) AWLP (j) TV (k) PanNet

(l) DRPNN (m) MSDCNN (n) ResTFNet (o) PNXnet
-1 1

Fig. 8: NDVI products generating from WorldView-2 images. The minimum of NDVI is -1 and the maximum is 1.

paper. In detail, we utilize images collected by QuickBird and
WorldView-2 to verify the pan-sharpening performance. And
then WorldView-2 data are subsequently used to generate high-
resolution NDVI. Furthermore, we also compared the model
generalization from Gaofen-2 to Gaofen-1 data. Moreover,
all experiments are after radiance calibration and atmospheric
correction.

In this study, we chose seven classical traditional algorithms
and four state-of-the-art deep learning-based methods, includ-
ing BDSD [64], PRACS [65], GSA [66], ATWT-M3 [67],

MTF-GLP-HPM [68], AWLP [24], TV [27], PanNet [40],
DRPNN [39], MSDCNN [42], and ResTFNet [46].

Furthermore, there are two types of testing carried out in this
study, including reduced-resolution testing under Wald’s proto-
col [69] and full-resolution testing. For the reduced-resolution
testing, five quantitative quality metrics are utilized to evaluate
the pan-sharpening performance from spatial and spectral
domains, including correlation coefficient (CC), mean peak
signal-to-noise ratio (mPSNR) in decibel units, mean structural
similarity (mSSIM) [70], spectral angle mapper (SAM) [71]
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(a) MUL (b) PAN (c) Original NDVI

(d) BDSD (e) PRACS (f) GSA (g) ATWT-M3

(h) MTF-GLP-HPM (i) AWLP (j) TV (k) PanNet

(l) DRPNN (m) MSDCNN (n) ResTFNet (o) PNXnet
-1 1

Fig. 9: NDVI products generating from WorldView-2 images. The minimum of NDVI is -1 and the maximum is 1.

in degree, and Erreur Relative Global Adimensionnelle de
Synthèse (ERGAS). For the full-resolution testing, the spectral
distortion index Dλ [72], spatial distortion index Ds [72],
Dρ [73], quality with no reference (QNR) [72], and hybrid
quality with no reference (HQNR) [74] are introduced to
characterize fusion performance. We only draw the reduced-
resolution testing on QuickBird and WorldView-2 data. As
for Gaofen-2 and Gaofen-1 data, we train model on Gaofen-2
data under Wald’s protocol and achieve both reduced and full
resolution testing on Gaofen-2 and Gaofen-1 data. Note that,

models are not retrained on Gaofen-1 data. In this way, we can
discuss the model generalization about comparison methods.

We build the proposed PNXnet with 9 ROBs, which shows
the best performance and fast computational speed. And Adam
optimization algorithm is employed to train PNXnet with
l1 loss function and learning rate of 0.01. All CNN-based
methods are trained by Pytorch framework running in the
Windows 10 environment with 32 GB RAM and one Nvidia
RTX 2080 GPU, and all traditional methods are performed
with MATLAB with an Intel CPU (Core i7-8700 @ 3.20
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(a) BDSD (b) PRACS (c) GSA (d) ATWT-M3

(e) MTF-GLP-HPM (f) AWLP (g) TV (h) PanNet

(i) DRPNN (j) MSDCNN (k) ResTFNet (l) PNXnet

Fig. 10: Relations between the different estimated NDVIs and the ground truth. Black lines denote the ideal relationship y = x,
and red lines illustrate the linear regression results. The color illustrates the density of samples. Goodness of fit R2 is displayed
at the top left.

GHz).

A. Pan-sharpening results on QuickBird and WorldView-2
sensors

1) Reduced-resolution testing: Table II reports the quantita-
tive results on the QuickBird and WorldView-2 data, where the
proposed PNXnet achieves the best performance in both two
data sets. Compared with traditional methods, deep learning-
based methods have a comparative advantage in reducing
spectral distortion, which performs with lower SAMs. MS-
DCNN shows unstable quantitative results in spatial or spec-
tral domains, sometimes better than PanNet, and sometimes
worse. With individual feature extraction modules for MS
and PAN images, ResTFNet can obtain good results close to
PNXnet, while it also suffers numerous model parameters and
large computational costs. In traditional methods, PRACS and
AWLP perform well in fusing spatial details, while MTF-GLP-
HPM can keep better spectral fidelity.

Fig. 6 and Fig. 7 illustrate the visual comparisons randomly
selected in QuickBird and WorldView-2 images, respectively.
On QuickBird images, we show the details of buildings and
vegetation in the red and yellow boxes. Traditional methods
except for TV successfully integrate enough spatial details
from PAN images to MS images. Compared with traditional
methods, deep learning-based algorithms shows better spatial
details except for MSDCNN. However, PanNet and DRPNN
show more spectral distortion than ResTFNet and the proposed
PNXnet. Compared ResTFNet with PNXnet, the buildings are
restored well while the texture of vegetation cannot be injected
sufficiently.

On WorldView-2 data, similar conclusions can be drawn.
Besides, PanNet and MSDCNN perform well, although their
results on QuickBird images look blurry. Moreover, ATWT-
M3 produces fused images with paler colors, which seem to
be covered with mist. BDSD excessively integrates edges or
textures and shows untruthfulness. Significantly, comparing
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(a) MSI (b) PAN (c) GT (d) PanNet

(e) DRPNN (f) MSDCNN (g) ResTFNet (h) PNXnet

(i) MSI (j) PAN (k) GT (l) PanNet

(m) DRPNN (n) MSDCNN (o) ResTFNet (p) PNXnet

Fig. 11: Visual results of NDVI and NIR band of Gaofen-2 and Gaofen-1 data. NDVIs are shown in the enlarged zooms.
(a)-(h) present results on Gaofen-2 data and (i)-(p) illustrate results on Gaofen-2 data.

Fig. 7b and Fig. 7c, we can find that, for WorldView-2
sensors, there is a little time difference between PAN and MS
imaging, represented by the different location of cars, which
may explain why all quantitative metrics on WorldView-2 data
all deteriorate.

2) Full-resolution testing: Limited by the article length,
we put all results into Supplementary Material1. Table S1
lists the full-resolution quantitative results on QuickBird and

1Reduced-resolution and full-resolution testings involve model generaliza-
tion, which will be systematically discussed on Gaofen-series data sets in
subsequent sub-section.

WorldView-2 sensors. Moreover, Fig. S1 and Fig. S2 display
the visual results in the full-resolution testing. For the injection
of the spatial detail, GSA shows the great superiority beyond
other pan-sharpening methods, and PNXnet shows more spa-
tial details in deep learning-based methods. For the spectral
fidelity, the proposed PNXnet keeps the best consistency with
the original multispectral images. Seeking a balance between
spatial details and spectral fidelity, the proposed PNXnet
achieves the best performance in deep learning-based methods
on both two data sets.
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(a) MSI (b) PanNet (c) DRPNN

(d) MSDCNN (e) ResTFNet (f) PNXnet

Fig. 12: Visual results of NDVI and NIR band on Gaofen-1 data in the full-resolution testing. The top half is NIR and the
bottom half is NDVI. Details are shown in the enlarged areas.

B. Application on high-resolution NDVI using pan-sharpened
WorldView-2 images

NDVI is a common and effective product to identify crop
phenological characteristics for reflecting crop growth process
within a year [75], which make great sense for agricultural
monitoring. The formula is as follows:

NDV I =
ρNIR − ρRed
ρNIR + ρRed

(13)

where ρNIR and ρRed mean surface reflectances of NIR
and Red channel. In this way, we can sequentially generate
the NDVI using pan-sharpened high-resolution MS images
through multiple pan-sharpening algorithms. It’s noted that
there are two NIR channels in the WorldView-2 data, i.e.,
NIR1 (770-895 nm) and NIR2 (860-1040 nm). As mentioned
in [76], the central wavelength of NIR regions is about 800
nm. So we utilize the NIR1 channel as ρNIR when dealing
with WorldView-2 data.

Obtaining high-resolution MS images through multiple pan-
sharpening algorithms, in this paper, we produce NDVI follow-
ing Eq (13). Fig. 8 and Fig. 9 present the NDVI generated from
the fused WorldView-2 images. As can be seen, PNXnet and
ResTFNet can obtain the best NDVI. In traditional algorithms,
AWLP, as well as MTF-GLP-HPM, produces the ideal NDVI

with a finer spatial difference and better global consistency.
TV suffers severe artifacts and ATWT-M3 presents blurring
effects. Moreover, BDSD and GSA present too many spatial
details, which may be due to the over-reliance on PAN images.
As for deep learning-based methods, they all produce visually
satisfactory NDVIs, except PanNet. PanNet shows little spatial
details. Besides, DRPNN obtains higher values compared with
the original low-resolution NDVI, shown with more red color.
MSDCNN shows good spatial details, but ResTFNet and
PNXnet produce finer details. Furthermore, compared with the
proposed PNXnet, ResTFNet shows some artificial blue spots,
which should be recognized as shadows.

To further evaluate the generated high-resolution NDVI,
we show the scatter plots of the different estimated NDVIs
and the ground truth in Fig. 10, where R2, Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) are also
displayed. It can be found that the proposed PNXnet gets the
highest consistency with the ground truth, showing R2 above
0.91, RMSE under 0.05, and MAE under 0.04. In traditional
algorithms, MTF-GLP-HPM achieves the best fitting with
the ground truth, which illustrates the same conclusion as
visual results. Besides, BDSD, GSA, and AWLP tend to
estimate NDVIs with a lower value. As for deep learning-based
methods, all models are inclined to produce higher NDVIs,
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TABLE III: Quantitative comparison of deep learning-based methods on Gaofen-2 and Gaofen-1 images, including reduced-
resolution and full-resolution testing. Models are all trianed on Gaofen-2 data set and transformed to Gaofen-1 sensor. The
best performance is shown in bold and the second best is underlined.

Sensors Models
Reduced Resolution Full Resolution

CC PSNR SSIM SAM ERGAS Dλ Ds Dρ QNR HQNR

Gaofen-2

PanNet 0.9757 42.5536 0.9676 2.2735 1.6732 0.3482 0.3391 0.3350 0.4308 0.6171

DRPNN 0.9793 42.4807 0.9760 2.9592 1.8487 0.0178 0.0403 0.2807 0.9426 0.9115

MSDCNN 0.9792 42.6150 0.9763 2.7362 1.7741 0.3162 0.1145 0.5046 0.6056 0.8516

ResTFNet 0.9832 42.7154 0.9784 2.5056 1.6961 0.0161 0.0392 0.2565 0.9453 0.9050

PNXnet 0.9838 44.8437 0.9800 1.7421 1.4068 0.0295 0.0132 0.2728 0.9577 0.9373

Gaofen-1

PanNet 0.9762 37.5012 0.9706 0.7743 1.1364 0.1693 0.2316 0.3137 0.6383 0.2693

DRPNN 0.9766 41.7804 0.9735 1.1209 0.7477 0.0778 0.0955 0.2988 0.8341 0.8041

MSDCNN 0.9656 39.3684 0.9612 1.1244 0.9100 0.3392 0.1340 0.5069 0.5722 0.4521

ResTFNet 0.9598 39.2505 0.9658 1.4544 0.9923 0.0627 0.0960 0.2584 0.8473 0.7503

PNXnet 0.9783 42.7794 0.9755 0.7673 0.7004 0.0741 0.0473 0.2468 0.8820 0.7947

TABLE IV: Quantitative results in ablation study of the proposed modules and strategies. The best performance is shown in
bold and the second best is underlined.

Methods ROB NF-ResB CC PSNR SSIM SAM ERGAS

ResTFNet % % 0.98315 42.7154 0.9784 2.5056 1.6961

PNXnet w/o NF-ResB X % 0.98343 44.7436 0.9795 1.9902 1.4540

The proposed PNXnet X X 0.98380 44.8437 0.9800 1.7421 1.4068

especially MSDCNN. ResTFNet also obtains good results,
while its fitting model looks more scattered than the proposed
PNXnet.

C. Model generalization from Gaofen-2 to Gaofen-1 satellite

Generalization ability plays a great role in deep learning-
based model performance. In this paper, we utilize two similar
sensors, Gaofen-2 and Gaofen-1, to compare the model gen-
eralization of five deep learning-based models. All models are
trained on the same data-set that comes from Gaofen-2 images
and tested on both Gaofen-2 and Gaofen-1 images. Results are
reported in Table III.

In the reduced-resolution testing, the proposed PNXnet
obtains the best quantitative results on both Gaofen-2 and
Gaofen-1 sensors. As we can see, ResTFNet achieves the
second-best on Gaofen-2 data set, while its results on Gaofen-1
images get worse. On the contrary, DRPNN shows no advan-
tage on Gaofen-2 images, but when transferred into Gaofen-
1 data set, the rank of its quantitative results is improved.
Moreover, in the full-resolution testing, ResTFNet performs
well on spectral maintaining as it obtains the best Dλ, and the
spatial fidelity of PNXnet is superior.

Because the NIR band is particularly important in gener-
ating NDVI, we also select images randomly from Gaofen-
2 and Gaofen-1 data sets and present the visual results of
the NIR band in Fig. 11, where NDVI is shown in the
enlarged area. Generally, spatial details in PAN images are
hardly injected into the NIR band because of their different
imaging mechanisms. So, it is obvious that, on Gaofen-2
images, PanNet, DRPNN, and MSDCNN get blurry results

and ResTFNet shows distinct color differences with the ground
truth. Nevertheless, PNXnet fuses the details into the NIR
band as well as keeps the original color information. Besides,
other methods tend to overestimate NDVI as showing more
red area, while PNXnet keeps good fidelity with ground
truth. Moreover, transferred to Gaofen-1 data, all models show
performance degradation on improving spatial details, such
as small lakes in the red box. In this situation, although
MSDCNN and DRPNN could inject some spatial details, they
suffer lower NDVI somewhere. However, PNXnet shows good
spatial details as well as stable NDVI generation.

Similar conclusions can be found from the results in the
full-resolution testing as shown in Fig. 12. The NIR bands
of PanNet results suffer from unclear textures and structures.
DRPNN shows better stability than MSDCNN for injecting
more details into NDVIs. ResTFNet truly acquires more
textures, however, it shows obvious color inconsistency with
the original NDVI. The proposed PNXnet generates the NIR
with enough spatial details as well as keeps high consistency
with the original NDVI in tone.

Comparing the results between reduce-resolution and full-
resolution testing, it can be observed that when the model
trained on the simulated low-resolution data set is employed to
solve pan-sharpening in real resolution, ResTFNet and PNXnet
are more likely qualified because they don’t show severe
performance degradation. In summary, PNXnet shows not
only good model generalization but also superior fusion effect
whether in pan-sharpening or in NDVI generation, which is
more suitable for daily application.
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D. Ablation study and model complexity

In the proposed PNXnet, there are two main modules,
including ROB and NF-group ResNet prior. To verify their
effectiveness respectively, an ablation study on PNXnet is
carried on in this subsection, and ResTFNet is chosen as the
baseline.

Table IV lists the quantitative results in the ablation study.
As we can see, the physical knowledge optimization-driven
framework can greatly improve the fusion effect as the first
two rows show, especially in spectral maintaining. It is noted
that PNXnet w/o NF-ResB utilized the ResNet without BN as
prior, while the residual units utilized in ResTFNet utilized
BN. Under this background, Table IV illustrates that the NF
ResNet haves surpassed ResNet with BN as well as ResNet
without BN.

TABLE V: Comparisons on model complexity and computa-
tional speed between five deep learning-based models.

Params/K FLOPs/G Time/s Convergence

PanNet 78.920 4.799 0.0161 225 epochs

DRPNN 3673.881 224.161 0.0381 300 epochs

MSDCNN 228.556 13.932 0.0237 300 epochs

ResTFNet 2366.312 28.814 0.0250 189 epochs

PNXnet 309.977 17.357 0.0311 87 epochs

Furthermore, comparisons on model complexity and com-
putational speed between deep learning-based models are
reported in Table V. We counted the model parameter number
(Params) in Kilos, floating-point operations (FLOPs) in Giga,
running time in seconds, and the convergence in epochs, where
the previous two are used to measure model complexity and
the rest represents computational speed.

PanNet acquires the least parameters and FLOPs, which
also costs the running time. Due to the 7 × 7 kernel size in
all convolutional layers, DRPNN costs large Params, FLOPs,
and the slowest running speed. Although ResTFNet costs
many parameters, the residual blocks boost its running speed.
However, ResTFNet still needs many epochs to achieve con-
vergence. Seeing PNXnet, we can find that physical knowledge
optimization-driven framework and group convolution reduce
Params and FLOPs with a little cost of running time, and NF-
ResB improves the convergence speed.

IV. CONCLUSION

This study shows a new approach to integrating spatial
details in PAN images with spectral information in MS im-
ages and its application in generating high-resolution NDVI.
By unfolding a variational pan-sharpening variational model
into CNN with normalizer-free group ResNet prior, the pro-
posed PNXnet fuses the low-resolution MS images and high-
resolution PAN images to obtain high-resolution MS images
and further produces high-resolution NDVIs. Experimental re-
sults illustrate that the fused MS images are visually satisfying
and highly reliable, and the estimated NDVI shows a high con-
sistency to the ground truth with R2 above 0.91. Moreover, the
good model generation for pan-sharpening also shows a good

advantage for generating high-resolution NDVI. Furthermore,
fewer parameters, low FLOPs, and quicker computational
speed make the daily application of PNXnet possible.
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