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Machine learning (ML) is influencing the literature in 
several research fields, often through state-of-the-

art approaches. In the past several years, ML has been ex-
plored for pansharpening, i.e., an image fusion technique 
based on the combination of a multispectral (MS) image, 
which is characterized by its medium/low spatial resolu-
tion, and higher-spatial-resolution panchromatic (PAN) 
data. Thus, ML for pansharpening represents an emerging 
research line that deserves further investigation. In this ar-
ticle, we go through some powerful and widely used ML-
based approaches for pansharpening that have been re-
cently proposed in the related literature. Eight approaches 
are extensively compared. Implementations of these eight 
methods, exploiting a common software platform and ML 
library, are developed for comparison purposes. The ML 
framework for pansharpening will be freely distributed to 
the scientific community. Experimental results using data 
acquired by five commonly used sensors for pansharpen-
ing and well-established protocols for performance assess-
ment (both at reduced resolution and at full resolution) 
are shown. The ML-based approaches are compared with 
a benchmark consisting of classical and variational op-
timization (VO)-based methods. The pros and cons of 

each pansharpening technique, based on the training-by-
examples philosophy, are reported together with a broad 
computational analysis. The toolbox is provided in https://
github.com/liangjiandeng/DLPan-Toolbox.

OVERVIEW 
Pansharpening is the process of combining an MS im-
age with a PAN image to produce an output that holds 
the same spatial resolution as the PAN image and the 
same spectral resolution as the MS image. To date, sev-
eral techniques for this have been proposed. With the 
development of new hardware and software solutions, 
ML approaches, especially deep learning-based (DL) 
frameworks, have been significantly developed. How-
ever, a fair comparison of these techniques (including, 
for instance, their development on the same software 
platform using the same libraries, testing on data sets 
simulated in a conventional way, and so forth) is still 
an open issue. To this end, in this article, we go through 
shallow to deep networks based on widely used and 
powerful ML-based pansharpening approaches. In ad-
dition, traditional approaches, belonging to component 
substitution (CS), multiresolution analysis (MRA), and 
VO, are compared and discussed. A quantitative and 
qualitative assessment is presented in the “Experimen-
tal Results” section, exploiting protocols at reduced 
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resolution and at full resolution. All the compared ML-
based techniques are implemented using PyTorch. The 
source code will be freely distributed to the community 
(https://github.com/liangjiandeng/DLPan-Toolbox). 
The ML framework for pansharpening uses a uniform 
programming style to facilitate interpretability for users.

BACKGROUND AND RELATED WORKS
Recently, some books [1] and review articles [2]–[4] about 
pansharpening have been published, attesting to pansharp-
ening’s key role in the field of remote sensing image fusion. 
In addition, in recent years, several other surveys have been 
published, such as [5]–[7], confirming the increased inter-
est in this area. Many techniques have been applied to the 
task of remote sensing pansharpening. They are usually di-
vided into four classes [4], i.e., CS, MRA, VO, and ML. In 
this article, we consider the first three classes to be tradi-
tional methods since their first approaches were proposed 
a long time ago. Meanwhile, several works in the related 
literature, such as [2] and [4], have deeply analyzed these 
categories. The remaining methods, belonging to the ML 
class, are further investigated in this article. In the rest of 
this section, we go through the four main categories of pan-
sharpening algorithms, introducing the related literature.

COMPONENT SUBSTITUTION
CS approaches (also called spectral methods) rely on the pro-
jection into a transformed domain of the original MS image 
to separate its spatial information and substitute it with the 
PAN image. Many pioneering pansharpening techniques 
belong to the CS class, thanks to their easy implementa-
tion. Two examples of CS approaches, proposed in the early 
1990s, are intensity–hue–saturation [8], [9] and principal 
component analysis (PCA) [10], [11].

By considering various image transformations, a vari-
ety of techniques for incorporating PAN spatial informa-
tion into original MS data have been developed. These 
methods are usually viewed as the second generation of 
CS techniques, mainly improving the injection rules by in-
vestigating the relationship between the pixel values of the 
PAN image and those of the MS channels. Representative 
approaches are the Gram–Schmidt (GS) method [12] and 
its adaptive version [13], nonlinear PCA [14], and partial 
replacement adaptive CS [15]. Beyond these CS strategies, 
some other recent approaches are based on 1) the local ap-
plication of CS algorithms and 2) the joint estimation of 
detail injection and estimation coefficients. The former 
subclass mainly focuses on sliding widow-based methods 
[13] and approaches relying on clustering and segmenta-
tion [16], whereas the latter one includes band-dependent 
spatial detail (BDSD) methods (see, e.g., BDSD [17] and its 
robust version [18]).

MULTIRESOLUTION ANALYSIS
MRA methods apply a multiscale decomposition to the 
PAN image to extract its spatial components. This class 

is also referred to as spatial methods, as they work in the 
spatial domain. General-purpose decompositions have 
been considered in the pansharpening literature, in-
cluding, for instance, Laplacian pyramids [19], wavelets 
[20], curvelets [21], and contourlets [22]. MRA-based 
fusion techniques present interesting features, such as 
temporal coherence [23], spectral consistency [2], and 
robustness to aliasing [24], thus deserving further in-
vestigation.

Recently, researchers have considered various de-
composition schemes and several ways to optimize the 
injection model to improve MRA-based methods. Due 
to their superior performance in other image process-
ing fields, nonlinear methods have been introduced 
into pansharpening; typical examples are least-squares 
support vector machines [25] and morphological filters 
[26]. Moreover, thanks to an in-depth analysis of the re-
lationship among the obtained images [27], [28] and the 
influence of the atmosphere on the collected signals, a 
series of advanced injection models have been designed 
[27], [29], [30]. A further crucial step forward has been 
the introduction of information about the acquisition 
sensors, thus driving the decomposition phase [24], 
[31]. This symbolized the beginning of the second gen-
eration of MRA-based pansharpening. The application 
of adaptive techniques has been proposed to deal with 
unknown and difficult-to-predict features about acqui-
sition sensors [32], [33] and to address the peculiarities 
of some target images [34].

Hybrid technologies combining MRA and CS methods 
(see, e.g., [4]) have also been proposed. They can be re-
garded as MRA approaches [24]. Within this category, two 
varieties have been considered, i.e., “MRA + CS” (MRA fol-
lowed by CS) [35] and “CS + MRA” (CS followed by MRA) 
[27], [36]. Other notable examples in this subclass include 
the use of independent component analysis in combination 
with curvelets [37] and the use of PCA with contourlets [38] 
and guided filters [39].

VARIATIONAL OPTIMIZATION
The class of VO methods focuses on the solution of opti-
mization models. In recent years, VO methods have be-
come more and more popular thanks to the advances in 
convex optimization and inverse problems, such as MS 
pansharpening [40]–[44] and hyperspectral image fusion 
[45]–[47]. Most VO methods focus on the relationship 
between the input PAN image, the low-spatial-resolution 
MS (LRMS) image, and the desired high-spatial-resolution 
MS (HRMS) image to generate the corresponding model. 
However, the problem to be solved is clearly ill posed, 
thus requiring some regularizers introducing prior infor-
mation about the solution (i.e., the HRMS). The target im-
age is usually estimated under the assumption of proper 
coregistered PAN and LRMS images. Anyway, some papers 
(see, e.g., [48]) have been proposed to deal with registra-
tion issues.
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The timeline of VO techniques starts in 2006, with the 
so-called panchromatic (P) + multispectral (XS) method 
[49].  Inspired by P + XS, researchers have proposed vari-
ous regularization terms [50], [51] and new fidelity terms 
[52]–[54]. In [55], the authors indirectly model the connec-
tion between PAN and HRMS images by considering the 
spectral low-rank relationship between them. Apart from 
P + XS-like methods, other approaches belonging to the 
VO class mainly include Bayesian methods [56]–[59] and 
sparse representations [60]–[67].

MACHINE LEARNING
ML-based methods have shown great ability in fusing MS 
and PAN data, thanks to the recent advances in computer 
hardware and algorithms. Classical ML approaches mainly 
include dictionary learning methods [62]–[65] and com-
pressed sensing techniques [60], [61]. Compressed sensing 
concerns acquiring and reconstructing a signal by efficient-
ly solving underdetermined linear systems. The sparsity of 
a signal can be utilized to recover the signal through proper 
optimization, even with considerably fewer samples than 
the ones required by the Nyquist–Shannon sampling the-
orem. The mainstream perspective based on compressive 
sensing pansharpening views the linear observation mod-
els (both the one focused on LRMS and the one related to 
the PAN) as a measurement process in compressive sens-
ing theory, then building effective and efficient algorithms 
to solve the related models under the sparsity assumption. 
Dictionary learning, a special representation strategy, is 
mainly based on sparse coding to find a sparse linear repre-
sentation from the input data, forming a so-called diction-
ary matrix and the corresponding coefficients. The main 
idea of dictionary learning for pansharpening is to calcu-
late (trained and untrained) dictionaries of LRMS and PAN 
images, then reconstruct the final HRMS pansharpened 
image by investigating the relationship between dictionar-
ies and the corresponding coefficients.

Recently, DL techniques have swept across almost all the 
applications in remote sensing imaging, including MS pan-
sharpening [68]–[83] and some closely related tasks such as 
remote sensing image superresolution (SR) [84]–[86] and 
hyperspectral image fusion [87]–[89]. The first work using a 
DL technique for pansharpening, dating to 2015, by Huang 
et al. [68], employed and modified an autoencoder scheme 
inspired by the sparse denoising task. In 2016, Masi et al. 
[69] built and trained the first fully convolutional neural 
network (CNN) for pansharpening, also called the pan-
sharpening NN (PNN). The architecture mainly consists of 
three convolutional layers and is inspired by the SR CNN 
[90], whose task concerns the single image SR problem. 
Meanwhile, Zhong et al. [70], in 2016, proposed a new 
CS pansharpening method based on the GS transform, in 
which a commercially available SR CNN was exploited to 
up-sample the MS component.

Following these pioneering approaches, this topic re-
ceived the interest of many researchers, as testified to by 

numerous publications, such as [72], [76], [77], and [81]–
[83]. Thus, the use of CNNs has become a common choice 
for DL-based pansharpening. Unlike the PNN, which has a 
simple network architecture, the later pansharpening archi-
tectures have been deepened and widened, receiving more 
and more complex structures with many parameters to fit 
during the training phase to obtain superior performance. 
These methods can be found in [71], [75], and [79]. Another 
research line using residual learning has been developed to 
effectively alleviate the phenomenon of gradient vanish-
ing and explosion, thus accelerating network convergence. 
Hence, residual learning has been widely applied to pan-
sharpening; see, e.g., [73], [91], and [92]. A weak generaliza-
tion ability of ML-based approaches can easily be observed, 
representing a key issue. Therefore, another research line is 
working toward the development and design of new net-
work architectures and preprocessing operators to improve 
ML approach generalization; see, e.g., [73] and [74].

In addition to the preceding DL methods, hybrid meth-
ods to combine traditional techniques (e.g., CS, MRA, and 
VO methods) and ML approaches have recently become 
a promising direction in the field of remote sensing pan-
sharpening; see, e.g., [47] and [92]–[100]. For example, in 
[92], motivated by avoiding linear injection models and 
replacing the detail injection phases in both CS and MRA 
methods, Deng et al. design a deep CNN, inspired by the 
CS and MRA schemes, to effectively manage the nonlinear 
mapping and image extraction features, thus yielding favor-
able performance. Moreover, with the development of DL 
and VO techniques, the literature is presenting combina-
tions of these two classes. Three strategies have been devel-
oped: the unfolding VO model [97], the plug-and-play op-
erator [93], and the VO+Net mixed model [47], [96], which 
can also be viewed as belonging to the VO class.

The outcomes of these latter approaches can benefit from 
the advantages of DL and VO classes, e.g., the good general-
ization ability of VO methods and the high performance of 
DL approaches. Specifically, in [94], Shen et al. incorporate 
the pansharpened outcomes learned from a DL model into 
a VO framework. This strategy is simple but quite effective 
in practical applications. Xie et al., in [95], use a strategy 
similar to [94] for the task of hyperspectral pansharpen-
ing, also producing promising outcomes. Differing from 
the strategy in [94] and [95], new DL network architectures 
propose to unfold traditional VO models. In [97], Feng et 
al. present a two-step optimization model based on spatial 
detail decomposition, then unfold the model under the 
gradient descent framework to further construct the corre-
sponding end-to-end CNN architecture. Similar to [97], Xu 
et al., in [98], propose a model-driven deep pansharpening 
network by gradient projection. Specifically, two optimiza-
tion problems regularized by the deep prior are formulated. 
The two problems are solved by a gradient projection algo-
rithm in which the iterative steps are constructed by two 
network blocks that will be effectively trained in an end-
to-end manner. Moreover, Cao et al., in [99], and Yin et al., 
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in [100], present sparse coding-based strategies to unfold 
optimization models into subproblems that are replaced by 
learnable networks.

Recently, unsupervised learning strategies have been 
introduced into the field of pansharpening; see, e.g., [101]–
[103]. Unsupervised learning explores hidden patterns and 
features without any labeled data, which means that there 
is no need to simulate data sets with labels for training. It 
is a direct approach to network training but strongly de-
pendent on the effectiveness of the loss function. In [101], 
Ma et al. propose a novel unsupervised pansharpening 
approach that can avoid the degrading effect of down-
sampling high-resolution MS images. The technique also 
considers a generative adversarial network (GAN) strategy, 
yielding excellent results, in particular, on full-resolution 
data. Furthermore, Qu et al., in [103], present a self-atten-
tion mechanism-based unsupervised learning technique 
for pansharpening. This can address some challenges, e.g., 
poor performance on full-resolution images and the wide 
presence of mixed pixels. In [104], leveraging the target-
adaptive strategy introduced in [74], Ciotola et al. present 
an unsupervised full-resolution training framework, dem-
onstrating its effectiveness on different CNN architectures 
[71], [73], [74].

GAN techniques [105] have recently been applied to the 
field of image processing. GANs mainly concern learning 
generative models via an adversarial process; thus, two 
models are required to be trained simultaneously, i.e., gen-
erative models to capture a data distribution and adversar-
ial models to compute the probability of a sample belong-
ing to training data. GANs have been applied to the task 
of pansharpening; see, e.g., [78], [101], and [106]–[110]. In 
[78], Liu et al. utilize a GAN to address the task of remote 
sensing pansharpening. This method mainly contains a 
two-stream fusion architecture consisting of a generator to 
produce the desired HRMS image and a discriminator to 
judge whether the image is real or pansharpened. In [110], 
to further boost accuracy, the authors propose a GAN-
based pansharpening framework containing two discrimi-
nators, the first dealing with image textures and the second 
accounting for image color.

Table 1 gives an overview of the four classes, focusing on 
aspects such as spatial fidelity, spectral fidelity, generaliza-
tion, running time, and model interpretability. For exam-
ple, it is easy to remark that ML methods generally get the 
best spatial and spectral performance but require training 
and testing data to have similar properties (e.g., a similar 
geographic area and acquisition time).

CONTRIBUTION
This article is focused on a deep analysis of the emerging 
class of pansharpening algorithms based on ML para-
digms. A complete review of the related literature has been 
presented. Henceforth, the article provides a critical com-
parison of the state-of-the-art approaches belonging to 
the ML class. To this end, a toolbox exploiting a common 

software platform and open source ML library for all the 
ML approaches has been developed. We would like to stress 
that this is the only way to get a critical comparison of ML 
approaches. In fact, changing software platforms and ML 
libraries (e.g., TensorFlow and Caffe), results in different 
built-in functions, thus generating different behaviors (e.g., 
a different initialization of the weights of the network) of 
the same algorithm coded in a different environment.

To overcome this limitation, a Python toolbox based 
on the PyTorch ML library (which is widely used for ap-
plications such as computer vision and natural language 
processing) has been developed. The toolbox will be freely 
distributed to the scientific community related to ML and 
pansharpening. In this article, eight state-of-the-art ap-
proaches are selected and implemented in the common 
framework, following the original implementations pro-
posed in related papers. A tuning phase to ensure the high-
est performance for each approach is performed. This rep-
resents a mandatory step to have a fair comparison because 
the eight approaches were originally developed on differ-
ent software platforms and using different ML libraries. A 
broad experimental analysis, exploiting different test cases, 
is conducted with the aim of assessing the performance of 
each ML-based state-of-the-art approach.

Widely used sensors for pansharpening are involved 
[i.e., WorldView-2 (WV2), WorldView-3 (WV3), World-
View-4 (WV4), QuickBird (QB), and Ikonos]. Assessments 
at reduced resolution and at full resolution are exploited. 
Two test cases at reduced resolution are considered. The 
first concerns the use of a part of the training set not used 
for this aim. However, by taking into account a testing 
area very close to that used in the training phase, we have 
a sort of coupling among data (e.g., sharing features with 
the training samples, such as the atmospheric composition 
and conditions). Thus, to test the ability of the networks 
to work in a real scenario, we consider a second test case 
in which the images are acquired by the same sensor but 
over a different area and at a different time with respect to 
the data used for the training. The comparison of the ML-
based approaches is also expanded to state-of-the-art meth-
ods belonging to different paradigms (i.e., CS, MRA, and 
VO), exploiting standard implementations [4]. Finally, a 
wide computational analysis is presented. Execution times 
for training and testing, convergence analysis, the number 

TABLE 1. AN OVERVIEW OF THE PROS AND CONS OF THE 
FOUR PANSHARPENING CLASSES.

CS MRA VO ML

Spatial fidelity

Spectral fidelity

Generalization ability

Running time

Interpretability

Weak: ; moderate: ; strong: .
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of parameters, and so forth are highlighted. Moreover, the 
generalization ability of the networks with respect to the 
change of the acquisition sensor is discussed.

NOTATION
The notation is as follows. Vectors are indicated in bold 
lowercase (e.g., x), with the ith element indicated as .xi  
2D and 3D arrays are expressed in bold uppercase (e.g., 
X). An MS image { }X X , ,k k N1= f=  is a 3D array composed 
of N bands indexed by the subscript , , ;k N1 f=  accord-
ingly, Xk  indicates the kth band of X. A PAN image is a 
2D matrix and is denoted as P. MS is an MS image, MSR  
is an MS image up-sampled to the PAN scale, and MS\  is 
a fused image. Other symbols will be defined within the 
article as needed. 

COMPONENT SUBSTITUTION, MULTIRESOLUTION 
ANALYSIS, AND VARIATIONAL OPTIMIZATION: A 
BRIEF OVERVIEW
In this section, we go through the CS, MRA, and VO 
categories, providing a brief overview of each class and 
instances of methods that are exploited in this article for 
comparison purposes. The methods belonging to the CS 
class rely on the projection of the MS image into a new 
space, where the spatial structure is separated from the 
spectral information [111]. Afterward, the transformed 
MS image can be sharpened by substituting the spatial 
component with the PAN image. Finally, the sharpen-
ing process is completed by the inverse transformation 
to return to the original space. CS methods obtain high 
fidelity in rendering details. Moreover, they are usually 
easy to implement and have a limited computational 
burden [2], [4].

Under the hypotheses of linear transformation and the 
substitution of a unique component, the CS fusion process 

can be simplified, obtaining faster implementation de-
scribed by the following formulation [112]:

	 ,MS MS G P Ik k k L$= + -^ hR\ � (1)

in which MSk\  is the kth fused band, MSkR  is the up-sampled 
image to the PAN scale, P is the PAN image, Gk  is the injec-
tion gain matrix, the matrix multiplication is meant point-
wise, and IL  is the so-called intensity component obtained by 
a weighted average of the MS spectral bands with weights .wk

Figure 1 describes the general fusion process for CS-
based approaches. There are blocks related to the up-sam-
pling, computation of ,IL  spectral matching between P and 
,IL  and detail injection according to (1). Setting the injec-

tion gains in (1) as the pixel-wise division between MSkR  
and ,IL  we have a multiplicative injection scheme, the 
widely known Brovey transform (BT) [113], [114]. An inter-
pretation of the BT in terms of the radiative transfer model 
led to the development of a haze-corrected version, called 
optimized BT with haze correction (BT-H), recently proposed 
in [30]. The GS orthogonalization procedure has also been 
used for pansharpening [12]. This approach exploits the 
intensity component, IL  as the first vector of the new or-
thogonal basis. Pansharpening is obtained thanks to the 
substitution of IL  with the PAN image before inverting the 
transformation.

Several versions of GS are achieved by varying .IL  The 
context-adaptive GSA (C-GSA) is obtained by separately 
applying an adaptive GS process (where IL  is obtained by 
a weighted average of the MS bands using proper weights 
[13]) to each cluster [16]. The BDSD framework, proposed 
for pansharpening in [17], exploits an extended version of 
(1) optimizing the minimum mean-square error for jointly 
estimating the weights and scalar gains [17]. A physically 
constrained (PC) optimization (i.e., the BDSD-PC) was re-
cently proposed in [18]. MRA methods extract the PAN de-
tails, exploiting the difference between P and its low-pass 
spatial version, .PL  The fused image is obtained as follows:

	 .MS MS G P Pk k k L$= + -^ hR\ � (2)

These different approaches are characterized by the way 
in which they calculate PL  and estimate the injection gains 

.Gk  In a very general setting, PL  is achieved through an it-
erative decomposition scheme, MRA. The general fusion 
scheme is depicted in Figure 2. We observe blocks devoted 
to the up-sampling, calculation of the low-pass version PL  
of the PAN image based on the resolution ratio R, and com-
putation of the injection gains .Gk  MRA algorithms reduce 
spectral distortion but often result in greater spatial distor-
tion [2], [4]. Among the MRA approaches, one much-debat-
ed subcategory is based on the generalized Laplacian pyra-
mid (GLP). In this case, PL  can be performed with multiple 
fractional steps, utilizing Gaussian low-pass filters to carry 
out the analysis steps [19]. The corresponding differential 
representation is called the Laplacian pyramid.

MS

Interpolation
to PAN Scale

P

Histogram
Matching

wk +

+

Gk

IL

− P+

MSk k

MSk
MS

FIGURE 1. The CS-based methods.
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However, high performance can be obtained with a 
single Gaussian low-pass filter tuned to closely match the 
MS sensor’s modulation transfer function (MTF) [31], with 
a cut frequency equal to /R1  (where R is the resolution ratio 
between PAN and MS) and decimating by R [4]. In the litera-
ture, many instances of GLP approaches, relying on filters 
that exploit the MS sensor’s MTF, have been proposed by 
changing the method to estimate the injection coefficients. 
In this article, we exploit high-pass modulation (HPM) in-
jection [114], i.e., setting the injection gains as the pixel-wise 
division between MSkR  and ,PL  adopting a spectral matching 
procedure based on the multivariate linear regression be-
tween each MS band and a low-pass version of the PAN im-
age, i.e., the MTF-GLP-HPM-R [115]. Moreover, we consider 
an MTF-GLP-full scale (FS) that is based on an FS fusion 
rule, thus removing the hypothesis of invariance among 
scales for the coefficient injection estimation phase [116].

The methods in the VO category rely on the definition 
of an optimization model. We exploit two instances of 
techniques belonging to the concepts of sparse representa-
tion and total variation (TV). In [66], an example of sparse 
representation for pansharpening is provided. In particu-
lar, the authors propose to generate the spatial details by 
using a dictionary of patches. Specifically, the dictionary 
Dh  at FS is composed of patches representing high-spatial-
resolution details. The coefficients a of the linear combina-
tion are estimated by solving a sparse regression problem. 
Under the hypothesis of scale invariance, the coefficients 
can be estimated thanks to a reference image. The problem 
to solve is as follows:

	 ,argmin such that y Dl
0a a a= =t � (3)

where y is a patch, 0$  is the l0  norm, and Dl  is a diction-
ary of details at reduced resolution. The estimated coeffi-
cients are used for the representation of the full-resolution 
details (i.e., ).y Dh ha=

The cost function for the TV pansharpening method in 
[50] is given by the following TV-regularized least-squares 
problem:

	 ( ) ( ),J TVx y Mx x2
m= - + � (4)

where [ , ], ,y y y yT T
MS PAN MS=  and yPAN  are the MS in a matrix 

format and the PAN in a vector; [ , ],M M M MT T
1 2 1=  is a deci-

mation matrix; M2  reflects that the PAN image is assumed 
to be a linear combination of the MS bands; m is a weight; 
and ( )TV $  is an isotropic TV regularizer. The pansharpened 
image x  is obtained by minimizing the convex cost func-
tion in (4).

A BENCHMARK RELYING ON RECENT ADVANCES IN 
MACHINE LEARNING FOR PANSHARPENING
ML for pansharpening mainly relates to the DL philos-
ophy, as pointed out in the “Background and Related 
Works” section. The approaches in this class strongly 

depend on the reduced-resolution training set (or the 
full-resolution one if belonging to the unsupervised 
paradigm). The testing data sets are exploited to get the 
network outcomes by using the trained models. In what 
follows, we choose eight representative supervised ML 
pansharpening approaches, i.e., the deep CNN archi-
tecture for pansharpening (PanNet) [73], deep residual 
NN for pansharpening (DRPNN) [71], multiscale and 
multidepth CNN architecture for pansharpening (MS-
DCNN) [75], bidirectional pansharpening network 
(BDPN) [79], detail injection-based CNN (DiCNN) 
[91], PNN [69], advanced PNN using fine-tuning (A-
PNN-FT) [74], and pansharpening by combining ML 
and traditional fusion schemes (FusionNet) [92], for 
a fair and critical comparison using the same training 
and testing data. It is worth remarking that we did not 
select unsupervised learning and GAN-based methods 
for comparison purposes since they can require differ-
ent training data sets (with respect to the used ones), 
invalidating the fair comparison.

DEEP CONVOLUTIONAL NEURAL NETWORK 
ARCHITECTURE FOR PANSHARPENING
In [73], Yang et al. design a deep CNN architecture, the 
PanNet, for the task of pansharpening, relying on high-
frequency information inputs from LRMS and PAN im-
ages. The PanNet architecture considers domain-specif-
ic knowledge and mainly focuses on preserving spectral 
and spatial information in remote sensing images. It first 
up-samples the LRMS image to the PAN scale, aiming 
to keep the spectral information. A deep residual net-
work is employed to learn the spatial mapping to obtain 
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the spatial details for the fused image. Specifically, the 
deep residual network mainly contains a preprocessing 
convolutional layer that increases the feature channels 
and a postprocessing convolutional layer that reduces 
the channels to the spectral bands. Furthermore, four 
residual network blocks [117] with a skip connection are 
employed to increase the network depth for better fea-
ture extraction.

In particular, the high-frequency spatial information 
of the LRMS and PAN images, which is obtained by us-
ing simple high-pass filters, is concatenated and exploit-
ed into the deep residual network for training. With this 
step, we can learn accurate spatial details that will be 
added to the LRMS to yield the final HRMS product. The 
output of the network is then compared with the ground 
truth (GT) image using an 2,  loss function. Via an Adam 
optimizer with momentum, the weights on all the lay-
ers can be suitably updated. This strategy of focusing on 
high-frequency content is valid, even obtaining good gen-
eralization ability. Details of the PanNet (including the 
architecture, hyperparameter setting, and so forth) are 
available in Figure 3.

The idea of the PanNet is to design the network archi-
tecture in the high-pass domain rather than the image 
domain that is commonly used for most DL-based tech-
niques. The domain-specific high-pass strategy can foster 
the network generalization capability since images ob-
tained from different sensors have similar distributions for 
high-frequency information. Also, since most high-pass 
details are close to zero, there is a reduction of the mapping 

space, leading to easier training of the network. In summa-
ry, the PanNet demonstrates that the training and general-
ization abilities of a network can be improved by focusing 
on a specific domain, i.e., the high-pass domain, instead of 
the original one.

DEEP RESIDUAL NEURAL NETWORK FOR 
PANSHARPENING
Wei et al. [71] proposed a deep residual NN, the DRPNN, 
to address the task of pansharpening, as shown in Figure 4. 
They believed that a deeper CNN with more filtering lay-
ers tends to extract more abstract and representative fea-
tures, and thus a higher prediction accuracy is expected. 
However, due to the gradient vanishing problem, weights 
of shallow layers cannot be optimized via backpropaga-
tion, which prevents the deep network from being fully 
learned. Deep residual learning [117] is an advanced meth-
od for solving this problem, in which the transformation 
( ) ( )F CNNX X.  is replaced with ) RES( )F(X X X.-  by 

setting a skip connection between separate layers, which 
facilitates adding more layers to the network to boost its 
performance.

In the DRPNN, Wei et al. built a deep residual skip before 
and after the convolutional filtering framework, containing 
10 layers with all the kernel sizes set to 7 × 7. MS bands to be 
fused are interpolated to the PAN scale and then concatenat-
ed with the PAN image to form an input cube. After the deep 
residual feature extraction, a restoration layer with N groups 
of convolutional filters is employed to obtain the fused im-
ages. The outcome is used to calculate the 2,  loss with the GT, 
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and then the stochastic gradient descent (SGD) algorithm is 
utilized to train the DRPNN, which costs 300 epochs. In ad-
dition, Wei et al. set different learning rates for the first 10 
layers and the last layer, which were 0.05 and 0.005, respec-
tively, while the momentum was fixed at 0.95. Note that after 
every 60 epochs, the learning rate would fall by half.

The deep residual skip ensures that the model learns the 
difference between input and output, leading to quick and 
accurate training. The strategy of the skip connection is also 
used in the PanNet, which was published in the same pe-
riod as the DRPNN. The DRPNN can achieve competitive 
outcomes thanks to its use of convolution kernels with a 
larger size, i.e., 7 × 7, which can cover a greater area. How-
ever, due to these larger kernels, the DRPNN has a relatively 
high number of parameters.

MULTISCALE AND MULTIDEPTH CONVOLUTIONAL 
NEURAL NETWORK ARCHITECTURE FOR 
PANSHARPENING
In [75], Yuan et al. proposed a multiscale and multidepth 
CNN, the MSDCNN, for pansharpening. As demonstrated 
in Figure 5, the MSDCNN extracts deep and shallow fea-
tures by using different convolutional filters with receptive 
fields of multiple scales and finally integrates them to yield 
better estimation. In pansharpening, coarse structures and 
texture details are of great importance for ideal restoration. 
At the same time, the sizes of the ground objects vary from 
very small neighborhoods to large regions containing thou-
sands of pixels, and a ground scene can cover many ob-
jects with various sizes. Recalling that multiscale features 
respond differently to convolutional filters with different 
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sizes, the authors proposed a multiscale block contain-
ing three parallel convolutional layers with kernel sizes of 
three, five, and seven.

Furthermore, they employed a short skip connection for 
each multiscale block, which formed the multiscale resid-
ual block (MSResB), as in Figure 5. Passing the input image 
cube through the deep extraction branch, the deep features 

,CNNd  which have been reduced to the same spectral di-
mensionality as the ideal MS images, can be extracted. On 
the other hand, the shallow features CNNs  are yielded by 
a shallow network branch with three convolutional layers, 
where the kernel sizes are nine, one, and five, respectively. 
Furthermore, the output feature numbers of the convolu-
tional layers in both branches are reduced as the depth in-
creases. The MSDCNN is trained for 300 epochs by using 
the 2,  loss function with the SGD optimization algorithm, 
where the momentum n is equal to 0.9 and the learning 
rate e  is 0.1.

Overall, the MSDCNN benefits from several features ob-
tained by convolving one feature with kernels of different 
sizes (called multiscaled operation). By this strategy, differ-
ent features with various receptive fields are concatenated 
to improve the feature extraction. Beyond the multiscaled 
operation in the so-called deep branch, the other branch 
conducts three plain convolutions to obtain the “shallow 
features.” We think the plain convolution layers in the shal-
low branch might not be necessary since they make the net-
work outputs from the two branches too flexible, resulting 
in uncertainty in learning deep and shallow features.

BIDIRECTIONAL PANSHARPENING NETWORK
In traditional MRA-based pansharpening methods, mul-
tiscale details of the PAN image are used to improve the 
resolution of the MS image. The accuracy of multiscale de-
tails is directly related to the quality of the pansharpened 

image. Insufficient details lead to blurring effects; excessive 
details result in artifacts and spectral distortions. To more 
accurately extract the multiscale details of an HRMS image, 
Zhang et al. [79] propose a two-stream network for pan-
sharpening, the BDPN. The network adopts a bidirectional 
pyramid structure to separately process the MS image and 
the PAN image, following the general idea of MRA. Multi-
level details are extracted from the PAN image and injected 
into the MS image to reconstruct the pansharpened image. 
The detail extraction branch uses stacked residual blocks 
to extract details, while the image reconstruction branch 
uses subpixel convolutional layers to up-sample the MS im-
age. The multiscale structure helps the network to extract 
multiscale details from the PAN image. It allows part of the 
computation to be located at reduced-resolution features, 
thus easing the computation burden.

In the network’s training, a multiscale loss function is 
used to accelerate the rate of convergence. At the beginning, 
reconstructed images at all the scales are supervised. As the 
training continues, the weight of the low-resolution scales 
gradually declines. A detailed flowchart of the BDPN is 
provided in Figure 6. Although the idea of a bidirectional 
structure has been proposed in other multiresolution fu-
sion applications, such as deep image SR [119], the BDPN 
used it first for pansharpening. However, because of the use 
of too many multiscaled convolution layers, the BDPN has 
a large number of parameters, similar to the DRPNN. This 
disadvantage can be alleviated by exploiting more effective 
convolutions.

DETAIL INJECTION-BASED CONVOLUTIONAL  
NEURAL NETWORK
He et al. [91] proposed a detail injection procedure based 
on DL end-to-end architectures to learn the MS details 
while enhancing the physical interpretability of the 
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pansharpening process. Two DiCNN models are imple-
mented following the three-layer architecture for SR pro-
posed by Dong et al. [90]. Figure 7 gives a graphical over-
view of the network used in this work based on the first 
proposed model in [91].

The adopted DiCNN receives as input the concatenation 
along the spectral dimension of the PAN image, P, and the 
MS image up-sampled to the PAN scale, .MSR  As a result, 
the volume ( , )G MS PRH W N 1! =# # + R  is obtained as input, 
where H × W indicates the spatial dimensions and N denotes 
the number of spectral bands of the MS plus the PAN image. 
This input volume G is processed by a stack of three 3 × 3 
convolution layers, where the first and second layers are fol-
lowed by the nonlinear activation function rectified linear 
unit (ReLU) to explore the nonlinearities of the data. In this 
regard, the stack of convolution layers exploits the relations 
between the up-sampled MS and PAN images to obtain MS 
details that can enhance the original MS data, involving the 
mapping function ( ; )GD it  that obtains the details of the 
MS fused image from the inputs G, with i  representing the 
set of the learnable parameters of the convolutions.

Moreover, the DiCNN employs residual learning to en-
hance the feature extraction process by propagating only 
the up-sampled MS image through a shortcut connec-
tion. This not only maintains the same number of spectral 
bands between the shortcut data and the obtained details 
(avoiding the implementation of an auxiliary convolution 
within the shortcut) but also provides an explicit physical 
interpretation. Indeed, in contrast to other deep models 
that work as black boxes, the DiCNN introduces a domain-
specific structure with a meaningful interpretation. As 
a result, the output ( ; )D G it  can be directly exploited to 
enhance the up-sampled MS image to produce the desired 
HRMS image.

In this sense, the main goal of the DiCNN is to minimize 
the loss function ( )l i  defined by (5), with the aim of appro-
priately adjusting the network parameters that best fit the data:
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where Y denotes the GT image, Np  is the number of in-
put patches, i is the index of the current patch, and F$  
is the Frobenius norm. This guarantees that the DiCNN 
approach can directly learn the details of the MS data. 
Overall, the strategy of the skip connection, as for the 
PanNet, DRPNN, and MSDCNN, is employed again in 
the DiCNN to have fast convergence with accurate com-
putation. Thanks to the use of only three convolution 
layers, the DiCNN involves significantly fewer network 
parameters while providing competitive pansharpened 
performance.

PANSHARPENING NEURAL NETWORK
The pansharpening CNN model by Masi et al. [69], the 
PNN, was among the first pansharpening solutions based 
on CNNs. Inspired by the SR network for natural images 
proposed in [90], the PNN is a very simple three-layer ful-
ly convolutional model. Table 2 reports the main hyper-
parameters related to PNN implementation for the pro-
posed toolbox, where, differing from the original version, 
the hyperparameters have been set equal for all sensors, 
with the obvious exception of the number of input and 
output channels of the whole network that are related to 
the number of spectral bands of the MS image. The three 
convolutional layers are interleaved by ReLU activations. 
Prior to feeding the network, the input MS component is 
upscaled to the PAN size via 23-tap polynomial interpola-
tion and concatenated with the PAN to form a single-input 
data cube.

Although the PNN exploits the CNN architecture 
for single-image SR in [90], just extending it to the 
pansharpening task, this approach holds quite an 
important role in the DL-based pansharpening com-
munity. In fact, it was the first attempt to address the 
pansharpening issue by using a fully CNN, resulting in 
an important benchmark for subsequently developed 
DL-based pansharpening techniques. Since the main 
structure of the PNN involves only three simple convo-
lution layers without skip connections, its parameters 
are not significant in terms of getting relatively slow 
convergence.
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ADVANCED PANSHARPENING NEURAL NETWORK 
USING FINE-TUNING
Two years later, Scarpa et al. [74] proposed an advanced 
version of the PNN, the A-PNN-FT, that presented three 
main innovations: residual learning, ,loss-1,  and fine-
tuning for target adaptation. Residual learning [117] is an 
important innovation in DL, introduced with the primary 
purpose of speeding up the training process for very deep 
networks, as it helps prevent vanishing gradient prob-
lems. However, it has proved to be a natural choice for 

resolution enhancement [120]. In 
fact, the desired superresolved image 
can be viewed as being composed of 
its low- and high-frequency compo-
nents, the former being essentially 
the input low-resolution image and 
the latter being the missing (or re-
sidual) part to be actually restored. 
Residual schemes naturally address 
SR and pansharpening problems in 
light of this partition, avoiding the 
unnecessary reconstruction of the 
whole desired output and reducing 
the risk of altering the low-frequen-
cy content of the image (i.e., spectral 
distortion). As a matter of fact, the 
majority of the recent DL pansharp-
ening models embed residual mod-
ules [71], [73], [74], [76], [78], [79]. 
Specifically, for the A-PNN-FT, a 
single input–output skip connection 
added to the PNN model converts 
the model in a global residual mod-
ule, as highlighted by the semitrans-
parent blocks of Figure 8, which 
summarizes the overall A-PNN-FT 
algorithm. Solid-line connections 
refer to the fine-tuning phase.

Differing from the usual train-
ing, where data samples do not come 
from test images, in fine-tuning, the 

same test image is used for parameter updates, as shown in 
Figure 8. This makes perfect sense thanks to the self-super-
vised learning allowed by the resolution downgrade process 
that generates labeled samples from the input itself. Further 
details about the training (pretraining for the A-PNN-FT) 
of all the toolbox models are provided in a dedicated sec-
tion of this article. When fine-tuning begins, the model pa-
rameters 0U  correspond to those computed in pretraining, 
and they are associated to what is referred to as the A-PNN. 
After a predetermined number of tuning iterations (50, by 
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TABLE 2. THE OPTIMAL PARAMETERS FOR THE EIGHT COMPARED ML-BASED METHODS.

PARAMETER PNN A-PNN-FT DRPNN MSDCNN PanNet DiCNN BDPN FusionNet

Epoch number 12,000 10,000 500 500 450 1,000 1,000 400

Minibatch size 64 64 64 64 32 64 8 32

Optimization algorithm SGD SGD Adam Adam Adam Adam Adam Adam

Initial learning rate 0.0289*bands 0.0289*bands 2 10 4# - 1 10 4# - 0.001 2 10 4# - 0.0001 0.0003

Learning rate tuning 
strategy

Fixed initial  
learning rate (FIL) 

FIL .0 5#  per  
60 epochs

.0 5#  per  
60 epochs

FIL .0 5#  per  
200 epoch

.0 8#  per  
100 epochs

FIL

Filter size for each layer ,9 9 5 5# # ,9 9 5 5# # 3 3# 3 3# 3 3# 3 3# 3 3# 3 3#

Filter number for each layer 64, 32 64, 32 32 32 64 32 64 32

Type of loss function 2, 1, 2, 2, 2, Frobenius Charbonnier 2,

Number of layers 3 3 11 12 10 3 43 10
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default) on the target (rescaled) test image, the parameters 
are frozen (say, ),U3  and eventually (follow the dashed 
lines) the full-resolution test image can be pansharpened 
using the “refined” A-PNN, that is, the A-PNN-FT.

PANSHARPENING BY COMBINING MACHINE 
LEARNING AND TRADITIONAL FUSION SCHEMES
The traditional approaches, such as CS and MRA, have 
achieved competitive outcomes in pansharpening. Never-
theless, they are under the assumption of linear injection 
models, which can be unsuitable in terms of the real spec-
tral responses for sensors typically used in pansharpening. 
This motivates utilizing nonlinear approaches, such as ML, 
to avoid the limitation of the linear injection models. In 
[92], Deng et al. exploit the combination of ML techniques 
and traditional fusion schemes, i.e., CS and MRA, to ad-
dress the task of pansharpening. The overall network archi-
tecture, the FusionNet, estimates the nonlinear injection 
models that rule the combination of the up-sampled LRMS 
image and the extracted details exploiting the two philoso-
phies. In particular, the extracted details can be calculated 
by directly inputting the difference between the duplicated 
PAN image and the up-sampled LRMS image into a deep 
residual network.

This strategy of directly differing the duplicated PAN 
and the up-sampled LRMS images is simple. However, it 
can preserve the latent spatial and spectral information 
from PAN and LRMS images, respectively. In addition, the 
extracted details are taken into account in a preprocessing 
convolutional layer to increase the feature channels; the ex-
tracted details then pass four residual network blocks to in-
crease the network depth for better feature extraction. The 
generated features are convoluted by a postprocessing layer 
to get HRMS details consisting of the same LRMS spectral 
band number. Moreover, the learned HRMS details are 

directly added to the up-sampled LRMS to yield the HRMS 
outcome. The FusionNet exploits an Adam optimizer with 
momentum and a fixed learning rate to train the network. 
The conventional 2,  function is selected as a loss function 
to measure the distance between the HRMS outcome and 
the GT image. Figure 9 contains further details about the 
FusionNet approach.

Thanks to the combination of ML techniques and tra-
ditional fusion schemes to design the network architec-
ture, the FusionNet can have better and faster regression 
between inputs and labels, generating competitive results 
when training and testing data sets have similar structures. 
However, since the FusionNet is also built by plain convolu-
tion layers, like the PNN and DiCNN (even with skip con-
nections), its network generalization is weaker than that 
of the PanNet and A-PNN-FT, which are based on specific 
operations, such as learning in the high-pass domain and 
fine-tuning.

EXPERIMENTAL RESULTS
This section is devoted to the description of experimen-
tal results. The quality assessment protocols are detailed 
together with the data sets and the benchmark used for 
comparison purposes. Afterward, the generation of the 
training data and the parameter tuning is provided. Finally, 
the results at reduced and full resolutions are summarized, 
including a discussion about the computational burden, 
convergence, and other details of ML-based approaches.

QUALITY ASSESSMENT OF FUSION PRODUCTS
The quality assessment of pansharpening methods and 
data products is a highly debated problem. Wald’s proto-
col [121] provides an answer to this issue by introducing 
two main properties (i.e., consistency and synthesis) that 
a fused product should satisfy. To verify the synthesis 
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property, a reduced-resolution assessment is considered. 
Thus, the original MS and PAN images are degrading by 
spatially filtering them to a reduced resolution. Then, the 
pansharpening algorithm is applied to these data, and the 
outcome is compared with the original MS data playing the 
role of the reference image. The more the fused and the ref-
erence images are similar, the higher the performance of 
the pansharpening approach. Clearly, the choice of the fil-
ters to spatially degrade the MS and PAN products could 
bias the assessment. Generally, spatial filters matching the 
MS sensor’s MTFs are exploited to degrade the MS image. 
Instead, ideal filters are adopted to reduce the resolution 
of the PAN image [4]. The similarity between the fused 
and reference images is measured by exploiting the follow-
ing multidimensional indexes: the spectral angle mapper 
(SAM) [122], relative dimensionless global error in synthe-
sis (ERGAS) [123], and multiband extension of the univer-
sal image quality index, Q2n  [124]. The ideal results are 
zero for the SAM and ERGAS and one for .Q2n

Unfortunately, a sole reduced-resolution assessment 
is not enough to state the superiority of a pansharpening 
algorithm. Indeed, an implicit hypothesis of “invariance 
among scales” is maintained when working at reduced reso-
lution. Thus, even though this assessment is very accurate, 
it is based on the validity of the assumption. To this end, a 
full-resolution assessment is also considered. In this case, 
no hypothesis is present, but the lack of a reference image 
reduces the accuracy of the performance assessment. In this 
article, the hybrid quality with no reference (HQNR) index 
is used. This borrows the spatial distortion index, ,DS  from 
the QNR index [125], and the spectral distortion index, ,Dm  
from Khan’s protocol [126]. The two distortions are com-
bined as follows:

	 ( )  ( ) ,D DHQNR 1 1 S= - -m
a b � (6)

where .1a b= =  Ideal values for the DS  and the Dm  in-
dexes are zero; thus, the optimal value for the HQNR is one.

DATA SETS
Several different test cases acquired by five widely used sen-
sors for pansharpening are considered. For all the sensors, 
assessments at reduced resolution and at full resolution, 
following the indications in the “Quality Assessment of Fu-
sion Products” section, are provided. The characteristics of 
the employed data sets are detailed as follows.

WORLDVIEW-2 DATA SETS
These data were acquired by the WV2 sensor, which works 
in the visible and near-infrared spectrum range. The MS 
sensor is characterized by eight spectral bands (coastal, 
blue, green, yellow, red, red edge, near-infrared region 1, 
and near-infrared region 2), and a PAN channel is available. 
The spatial sampling interval (SSI) is 1.84 m for MS and 
0.46 m for PAN, respectively. The resolution ratio R is equal 
to four. The radiometric resolution is 11 b.

The following three data sets are exploited:
1)	 WV2 Washington, representing a mixed area in Wash-

ington, United States, characterized by an elevated pres-
ence of high buildings, vegetated areas, and a river (the 
size of an MS spectral band is 6,248 × 5,964); see Figure 10.

2)	 WV2 Stockholm, depicting a mixed zone with several 
water bodies in the urban area of Stockholm, Sweden 
(the size of an MS spectral band is 1,684 × 2,176); see 
Figure 10.

3)	 WV2 Rio, showing a mixed area of the city of Rio de 
Janeiro, Brazil, characterized by vegetated and urban 
features and a small portion of the ocean at the top right 
of the image (the size of an MS spectral band is 512 × 
512); see Figure 11.
The first two data sets are used for training and testing 

the networks at reduced resolution, following Wald’s pro-
tocol, as in the “Quality Assessment of Fusion Products” 
section. The third is exploited to test the ability of the net-
works in real conditions, namely, with a different data set 
acquired by the same sensor over a different area of the 
world and at a different time, thus having different features, 
such as atmospheric conditions, haze, landscapes, solar el-
evation angles, and so forth. In this case, reduced- and full-
resolution assessments are performed.

WORLDVIEW-3 DATA SETS
These data were acquired by the WV3 sensor, which works 
in the visible and near-infrared spectrum range. The MS 
sensor is characterized by eight spectral bands (the same as 
the WV2 MS sensor), and a PAN channel is available. The 
SSI is 1.2 m for MS and 0.3 m for PAN, respectively, and R is 
equal to four. The radiometric resolution is 11 b.

Three data sets are exploited, as follows:
1)	 WV3 Tripoli, representing an urban area of Tripoli, Lib-

ya (the size of an MS spectral band is 1,800 × 1,956); see 
Figure 10.

2)	 WV3 Rio, a mixed data set showing both vegetated and 
man-made structures in the surroundings of Rio de Ja-
neiro (the size of an MS spectral band is 2,380 × 3,376); 
see Figure 10.

3)	 WV3 New York, depicting the urban area of New York 
City, with more tall buildings with respect to European 
urban scenarios (the size of an MS spectral band is 
512 × 512); see Figure 11.
Again, the first two data sets are used for training and 

testing the networks at reduced resolution, following Wald’s 
protocol. The real test cases (at reduced resolution and at 
full resolution) are performed by exploiting the third set.

WORLDVIEW-4 DATA SETS
These data were acquired by the WV4 sensor, which works 
in the visible and near-infrared spectrum range. The MS sen-
sor is characterized by four spectral bands (blue, green, red, 
and near-infrared region), and a PAN channel is available. 
The SSI is 1.24 m for MS and 0.31 m for PAN, respectively, 
while R is equal to four. The radiometric resolution is 11 b.
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The following two data sets are exploited:
◗◗ WV4 Acapulco, representing a mixed area with sea, land, 

and urban areas in the surroundings of the city of Aca-
pulco, Mexico (the size of an MS spectral band is 4,096 × 
4,096); see Figure 10.

◗◗ WV4 Alice, a mixed data set mainly showing urban and 
bare soil features related to the city of Alice Springs, Aus-
tralia (the size of an MS spectral band is 512 × 512); see 
Figure 11.
Once more, the first data set is used for training and test-

ing the networks at reduced resolution, following Wald’s 
protocol. The real test cases (at reduced resolution and at 
full resolution) are performed by exploiting the second.

QUICKBIRD DATA SETS
These data were acquired by the QB sensor, which works in 
the visible and near-infrared spectrum range. The MS sen-
sor is characterized by four spectral bands (blue, green, red, 
and near-infrared region). A PAN channel is available. The 
SSI is 2.44 m for MS and 0.61 m for PAN, respectively; R is 
equal to four. The radiometric resolution is 11 b.

The following two data sets are exploited:
1)	 QB Indianapolis, representing a mixed area with a high 

presence of man-made structures as well as water bod-
ies and green areas captured over the city of Indianapo-
lis, Indiana (the size of an MS spectral band is 3,624 × 
4,064); see Figure 10.

WV2

WV3

WV2 Stockholm WV2 Washington

WV3 Rio WV3 Tripoli

QB Indianapolis

WV4 Acapulco

FIGURE 10. The data sets used for training the ML approaches (selected bands: red, green, and blue). Note that the images related to the 
data sets are intensity stretched to aid visual inspection.

WV2 Rio WV3 New York WV4 Alice Springs QB San Francisco Ikonos Toulouse

FIGURE 11. The data sets used for testing the ML approaches (selected bands: red, green, and blue). Note that the images related to the 
data sets are intensity stretched to aid visual inspection.
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2)	 QB San Francisco, showing the urban area of San Fran-
cisco (the size of an MS spectral band is 512 × 512); see 
Figure 11.
The first is used for training and testing the networks 

at reduced resolution, following Wald’s protocol. The real 
test cases (at reduced resolution and at full resolution) are 
performed by exploiting the second.

IKONOS DATA SET
This data set represents an area of the city of Toulouse, 
France. It was acquired by the Ikonos sensor, which 
works in the visible and near-infrared spectrum range. 
The MS sensor is characterized by four spectral bands, 
as with the QB sensor, and a PAN channel is available. 
The resolution cell is 4 × 4 m for the MS bands and 1 × 1 
m for the PAN channel; therefore, R is equal to four. The 
radiometric resolution is 11 b. The size of an MS spectral 
band is 512 × 512 pixels (see Figure 11). This data set is 
used to assess the generalization ability of the networks 
with respect to the changing of both the acquisition sen-
sor and captured scenario. In particular, we exploit net-
works trained on the QB data set and evaluated on this 
IKONOS data set.

BENCHMARK
Several state-of-the-art algorithms are employed for com-
parison purposes, presented as follows:

◗◗ EXP: MS image interpolation using a polynomial kernel 
with 23 coefficients 

◗◗ CS methods:
•• BT-H [30]
•• BDSD with physical constraints (PCs) [18]
•• context-based GS adaptive (C-GSA) with local pa-
rameter estimation exploiting clustering [16]

◗◗ MRA methods:
•• GLP with MTF-matched filters with an FS regres-
sion-based injection model (MTF-GLP-FS) [116]

•• GLP with MTF-matched filters and an HPM injec-
tion model with a preliminary regression-based 
spectral matching phase (MTF-GLP-HPM-R) [115]

◗◗ VO methods:
•• pansharpening based on sparse representation of 
injected details (SR-D) [66]

•• pansharpening based on TV [50];
◗◗ ML methods:

•• PanNet: PanNet [73]
•• DRPNN: DRPNN [71]
•• MSDCNN: MSDCNN [75]
•• BDPN: BDPN [79]
•• DiCNN: DiCNN [91]
•• PNN: PNN [69]
•• A-PNN-FT: A-PNN-FT [74]
•• FusionNet: FusionNet [92].

A more detailed description of the methods can be found 
in the “Component Substitution, Multiresolution Anal-
ysis, and Variational Optimization: A Brief Overview” 

and “A Benchmark Relying on Recent Advances in Ma-
chine Learning for Pansharpening” sections and the re-
lated references.

GENERATION OF TRAINING DATA
The building of the training set is a crucial step for ML-
based pansharpening approaches. Although, in the litera-
ture, there are plenty of state-of-the-art ML-based methods, 
the process of generating training sets is often different, 
leading to unfair comparisons. This section is devoted to 
the illustration of the whole procedure of generating train-
ing samples for ML-based pansharpening. Moreover, the 
MATLAB code for simulating training sets will be distrib-
uted to the community.

The overall procedure of generating training samples 
is depicted in Figure 12, which involves the follows three 
main steps:
1)	 Data download: Because of license limitations, we are not 

permitted to share the original data. Readers can direct-
ly download them from commercial websites (for WV 
data, readers can refer to https://resources.maxar.com/). 

2)	 Data simulation: After downloading the source im-
ages, we can read the original PAN and MS images. 
Afterward, according to Wald’s protocol, we filter the 
original MS image matching the corresponding sen-
sor’s MTF (the MATLAB code for the filtering using the 
MTF can be found at the following link: https://github.
com/liangjiandeng/DLPan-Toolbox/tree/main/02-Test 
-toolbox-for-traditional-and-DL(Matlab)/Tools) and 
the original PAN image by using an almost ideal filter, 
then downgrading the filtered images by the nearest-
neighbor interpolation with a scale factor of four. The 
down-sampled MS image will be up-sampled to the 
PAN scale by a 23-tap polynomial interpolator. Hence, 
we exploit the following in the training phase: 1) the 
down-sampled PAN image, 2) the down-sampled MS 
image, 3) the original MS image as the GT, and 4) the 
up-sampled version of the down-sampled MS image 
(UMS). Refer to Figure 12 and Table 3 for more details 
about the simulation process and the data used in this 
work, respectively.

3)	 Data patching: The simulated images in step 2 are too 
big (considering the limited storage capabilities of the 
GPUs) to feed the pansharpening networks. Thus, we 
need to crop these simulated images into small patches. 
We segment the GT, UMS, PAN, and MS images into 
several small patches with sizes of 64 × 64 × 8 (with an 
overlap of 16 spatial pixels), 64 × 64 × 8 (with an overlap 
of 16 spatial pixels), 64 × 64 × 1 (with an overlap of 16 
spatial pixels), and 16 × 16 × 8 (with an overlap of four 
spatial pixels due to the scale factor of four), respectively 
(the MATLAB code for patching the training data sets 
can be found at the following link: https://github.com/
liangjiandeng/DLPan-Toolbox). Finally, we have 9,000 
training samples (i.e., 9,000 patch images) and 1,000 
validation samples for the WV3, WV4, and QB data sets, 
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and 14,496 training samples and 1,611 validation sam-
ples for the WV2 data set, which can avoid overfitting 
during the training phase. Refer to Figure 12 for more 
details.

PARAMETER TUNING
This section shows the parameter settings for all the com-
pared ML-based pansharpening methods, including infor-
mation about the epoch number, learning rate, optimiza-
tion algorithm, loss function, and so forth. These details 
can be found in Table 2. Note that some ML-based meth-
ods were originally implemented on other platforms (e.g., 
TensorFlow and MatConv). When we migrated the codes 
to PyTorch, the original parameters were tuned again, ac-
counting for the different behavior of built-in functions 
(e.g., a different weight initialization) in the adopted soft-
ware platform.

ASSESSMENT ON WORLDVIEW-2 DATA
In this section, we analyze the outcomes obtained on WV2 
test cases. Multiple reduced-resolution testing data sets are 
first evaluated. Then, another data set is used to assess the 
performance at reduced resolution and at full resolution.

PERFORMANCE ON 12 REDUCED-RESOLUTION  
TESTING DATA SETS
We first evaluate the quantitative performance of all the 
compared pansharpening methods on 12 WV2 reduced-
resolution testing data sets acquired over Stockholm, i.e., 
the testing data in Table 3 (A) (see the WV2 Stockholm 
data set in Figure 10). Note that multiple testing samples 
are captured over a similar area at the same time as those of 
the training data set but exploit different cuts. By looking 

at the quantitative performance displayed in Table 4, it is 
easy to see that the ML-based approaches obtain better av-
erage indicators than the traditional techniques and have 
smaller standard derivations, indicating better robustness. 
Specifically, the FusionNet outperforms the other ap-
proaches on these testing data. The PanNet, DRPNN, and 
DiCNN also have competitive performance. Overall, be-
cause the training data set has properties similar to those 
of the testing samples, the outcomes of ML-based meth-
ods show clear superiority with respect to the traditional 
techniques. This corroborates the ability of the networks 
during the training phase to properly fit their weights, thus 
easily solving problems similar to the ones proposed in 
this testing phase.

PERFORMANCE ON THE REDUCED-RESOLUTION 
WORLDVIEW-2 RIO DATA SET
This section evaluates the performance of all the compared 
methods on a single reduced-resolution WV2 test case. Dif-
fering from the reduced-resolution WV2 Stockholm testing 
samples in the preceding section, in this case, the single 
WV2 testing data set is acquired at different times over the 
city of Rio. Readers can examine the WV2 Rio testing im-
age in Figure 11. Specifically, Figure 13 reveals that most of 
the traditional methods have more visual appeal than the 
ML-based approaches. Generally speaking, only small dif-
ferences among the compared techniques can be identified. 
One exception is represented by the outcome provided by 
the PNN, which has high spectral distortion. The A-PNN-
FT (which is an extension of the PNN) has competitive 
visual performance with high spectral preservation, thus 
demonstrating the effectiveness of using the fine-tuning 
strategy for PNN-based approaches.

4

Ideal Filter

Matching
Sensor’s

MTF

Original PAN

Original HRMS
(GT)

MS Up-Sampled
MS Image

PAN

23-Tap Polynomial
Interpolator

4

Patching...

N: The Number of Training Samples
Note: Taking Eight-Band WV3
         Data as an Example

PAN: N × 64 × 64 × 1

MS: N × 16 × 16 × 8

Up-Sampled MS Image:
N × 64 × 16 × 8

GT: N × 64 × 64 × 8

FIGURE 12. The generation process of training samples by Wald’s protocol. Note that the names highlighted in red refer to the generated 
training data used to feed the networks, i.e., the GT, LRMS image, PAN, and up-sampled MS image.
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Quantitative results are reported in Table 5. From the 
table, the differences among all the compared methods are 
easily seen. Most of the traditional state-of-the-art methods 
achieve very high indicators, thus demonstrating their spa-
tiospectral preservation ability. The BT-H method achieves 
the highest Q8 indicator, and the MTF-GLP-HPM-R obtains 
the lowest ERGAS among all the compared methods. In 
contrast, we can observe that the results of the ML-based 
methods differ from one another. Some ML-based ap-
proaches, e.g., the PanNet, A-PNN-FT, DRPNN, and MS-
DCNN, have promising results, whereas other methods, 
such as the PNN, BDPN, and DiCNN, have a significant 
performance reduction. A possible reason is that the testing 
data set used here is quite different with respect to the train-
ing data, e.g., a different acquiring area and time.

Generally speaking, the more parameters there are to be 
trained, the greater the amount of data required to estimate 
them. Moreover, to improve the generalization ability, the 
training set should consist of samples acquired in several 
areas and in different conditions to convey to a network 
complete knowledge of the problem at hand. In the absence 
of a huge and variegated training set, this kind of analysis 
will reward only networks designed with a higher general-
ization ability and networks, including the A-PNN-FT, that 
exploit mechanisms such as the fine-tuning that allows 
adaptation to specific problems presented during the test-
ing phase. Thus, the A-PNN-FT has the lowest SAM met-
ric, which indicates better spectral preservation. Overall, 
among the ML-based methods, the PanNet yields promis-
ing outcomes, but its performance is still worse than most 
of the traditional approaches. More conclusions about the 
compared ML-based methods can be found in Table 5 for 
each quality metric.

PERFORMANCE ON THE FULL-RESOLUTION 
WORLDVIEW-2 RIO DATA SET
Apart from the evaluation of the reduced-resolution data 
sets, an assessment at full resolution is also needed. To this 
end, an original full-resolution WV2 Rio data set is used 
(see Figure 11). Note that the full-resolution WV2 Rio data 
are also acquired over a different area and at a different time 
when compared with the WV2 training data. Since there is 
no GT image, we exploit proper indexes with no reference. 
We select the HQNR (consisting of the combination of Dm  
and )DS  to have a quantitative evaluation of the perfor-
mance, as introduced in the “Quality Assessment of Fusion 
Products” section. Table 6 reports the quantitative results. 
It is easy to observe that most of the traditional state-of-the-
art approaches have high performance (even comparing 
them with the results of the ML-based methods). In par-
ticular, two traditional methods, i.e., the SR-D and TV, rank 
first and third among the 16 compared techniques.

The PanNet is the best ML-based approach and holds 
the second position in the overall ranking, showing its 
good network generalization. The reason could relate to 
the network training conducted only on high-frequency 

TABLE 4. THE AVERAGE RESULTS OF THE APPROACHES  
BELONGING TO THE BENCHMARK FOR THE REDUCED- 
RESOLUTION WV2 STOCKHOLM TESTING DATA SET, I.E.,  
ON THE 12 WV2 TESTING DATA SETS IN TABLE 3 (A).

Q8 (±STANDARD 
DEVIATION)

SAM 
(±STANDARD 
DEVIATION)

ERGAS 
(±STANDARD 
DEVIATION)

CS/MRA/VO

GT 1 ± 0 0 ± 0 0 ± 0

EXP 0.5812 ± 0.0569 7.4936 ± 1.2394 7.0288 ± 0.8265

BT-H 0.8501 ± 0.041 6.5042 ± 1.3519 4.1552 ± 0.5579

BDSD-PC 0.843 ± 0.0477 7.1664 ± 1.2654 4.3242 ± 0.5203

C-GSA 0.8323 ± 0.0442 7.8657 ± 1.3074 4.6591 ± 0.4554

SR-D 0.8321 ± 0.0457 6.6042 ± 1.3383 4.3915 ± 0.6267

MTF-GLP-
HPM-R

0.8356 ± 0.0446 7.3204 ± 2.0298 5.0992 ± 2.3204

MTF-GLP-FS 0.8347 ± 0.0391 7.4497 ± 1.6581 4.5257 ± 0.6078

TV 0.794 ± 0.0834 7.2902 ± 0.9685 4.84 ± 0.3226

ML

PanNet 0.913 ± 0.0551 4.4143 ± 0.6642 2.7713 ± 0.3156

DRPNN 0.9109 ± 0.0528 4.473 ± 0.6906 2.8552 ± 0.3393

MSDCNN 0.9079 ± 0.054 4.5698 ± 0.7250 2.9078 ± 0.3469

BDPN 0.8924 ± 0.0578 5.1381 ± 0.8587 3.2144 ± 0.3781

DiCNN 0.9111 ± 0.0528 4.4857 ± 0.7061 2.8411 ± 0.3365

PNN 0.9043 ± 0.0573 4.6774 ± 0.7064 2.9374 ± 0.3369

A-PNN-FT 0.8991 ± 0.0519 4.9263 ± 0.8348 3.1363 ± 0.3887

FusionNet 0.9169 ± 0.0532 4.2632 ± 0.6336 2.6911 ± 0.3115

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 5. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE REDUCED-RESOLUTION WV2 
RIO DATA SET (SEE FIGURE 11).

Q8 SAM ERGAS

CS/MRA/VO

GT 1 0 0

EXP 0.7283 4.8597 6.7878

BT-H 0.9441 3.5368 3.3027

BDSD-PC 0.9316 4.032 3.7105

C-GSA 0.9407 3.8848 3.3972

SR-D 0.9375 3.7881 3.3127

MTF-GLP-HPM-R 0.9436 3.8778 3.2173

MTF-GLP-FS 0.9426 3.8129 3.2578

TV 0.9341 4.1811 3.7521

ML

PanNet 0.9329 4.2582 3.8532

DRPNN 0.9301 5.092 4.191

MSDCNN 0.92 5.4779 3.8565

BDPN 0.8888 5.9709 5.5306

DiCNN 0.8925 5.6765 5.4202

PNN 0.8866 9.4634 6.5718

A-PNN-FT 0.9374 3.53 3.3032

FusionNet 0.9069 5.122 4.1184

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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information. Some ML-based approaches yield lower in-
dexes than the traditional methods because the ML-based 
methods are practically trained on different training sam-
ples (as discussed in the previous section) and, in this case, 
on reduced-resolution samples with data with a lower spatial 
resolution (this is the main drawback of training ML-based 
approaches in a supervised manner). This conclusion also 
refers to the PNN, which obtains the worst HQNR among 
all the techniques, not only because of its relatively small 
size but most likely for the lack of residual modules (skip 
connections), which makes the network prone to spectral 
distortion on new data sets. After the introduction of a skip 
connection (the A-PNN) and implementing a fine-tuning 
strategy, the network (i.e., the A-PNN-FT) can achieve better 
results (reaching the fourth position in the ranking), thus 
corroborating the generalization ability of adaptive fine-
tuning combined with the robustness provided by properly 
set residual skip connections.

ASSESSMENT ON WORLDVIEW-3 DATA
In this section, we repeat the same three tests but use WV3 
data. Multiple reduced-resolution testing data sets are eval-
uated first. Then, another data set is used to assess the per-
formance at reduced resolution and at full resolution.

PERFORMANCE ON FOUR REDUCED-RESOLUTION 
TESTING DATA SETS
This section first evaluates all the compared pansharpen-
ing methods on four reduced-resolution WV3 Rio testing 
data sets that share a similar geographic area and have the 
same acquiring time as one of the data sets used for training 
[see the testing data in Table 3 (B) and the WV3 Rio image 
in Figure 10]. Table 7 reports the average numerical results 
of all 16 compared state-of-the-art pansharpening methods 
on the four reduced-resolution WV3 Rio testing data sets. 
From the table, it is clear that all the ML-based approaches 
outperform the traditional methods on the three related 
reduced-resolution indicators, i.e., Q8, SAM, and ERGAS. 
Note that the FusionNet has the best Q8, SAM, and ERGAS 
metrics (and most of the best standard deviations), show-
ing its promising ability on testing data acquired over geo-
graphic areas similar to those in the training data. Among 
the ML-based methods, the PanNet, DRPNN, MSDCNN, 
and DiCNN can be grouped in a second-best class. Indeed, 
their performance is slightly worse than that of the Fusi-
onNet and A-PNN-FT but better than the BDPN and PNN. 
Among the traditional methods, the BT-H outperforms 
the others. TV has the worst Q8 and ERGAS indicators. 
The main reason for the outstanding performance of the 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

FIGURE 13. Visual comparisons in natural colors of the evaluated approaches on the reduced-resolution WV2 Rio data set (see Figure 11). 
The (a) PAN, (b) EXP, (c) BT-H, (d) BDSD-PC, (e) C-GSA, (f) SR-D, (g) MTF-GLP-HPM-R, (h) MTF-GLP-FS, (i) TV, (j) PanNet, (k) DRPNN, (l) 
MSDCNN, (m) BDPN, (n) DiCNN, (o) PNN, (p) A-PNN-FT, (q) FusionNet, and (r) GT.
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ML-based methods is the same as in the “Performance on 
12 Reduced-Resolution Testing Data Sets” section, i.e., the 
similarity between training and testing data sets.

PERFORMANCE ON THE REDUCED-RESOLUTION 
WORLDVIEW-3 NEW YORK DATA SET
We evaluate the quantitative performance of all the compared 
pansharpening methods on a new reduced-resolution WV3 
data set used only for testing purposes. It was acquired over 
New York City and appears in Figure 11. The testing data set 
has a different geographical area captured at a different time 
when compared with the training data set. According to 
Table 8, the traditional approaches outperform most of the 
ML-based methods on all the quality metrics. The BDSD-PC, 
belonging to the class of traditional methods, has the two best 
indicators, i.e., Q8 and ERGAS, while another traditional tech-
nique, i.e., the BT-H, has the lowest SAM. Nevertheless, some 
ML-based approaches, such as the PanNet, DRPNN, BDPN, 
and A-PNN-FT, obtain competitive outcomes and represent 
the second-best class among all the compared methods. In 
contrast, the other three ML-based methods—the DiCNN, 
PNN, and FusionNet—have the worst performance. In par-
ticular, the PNN achieves the largest SAM (almost 5º more 
than the second-worst method), indicating higher spectral 
distortion than the other approaches. The reason why these 
three ML-based methods are worse than the other ones re-
lates to their simpler network architecture with fewer param-
eters, which could not fit well the problem’s nonlinearities.

PERFORMANCE ON THE FULL-RESOLUTION 
WORLDVIEW-3 NEW YORK DATA SET
Similar to the “Performance on the Full-Resolution World-
View-2 Rio Data Set” section, this section compares the 
qualitative and quantitative performance of all the methods 
on the full-resolution WV3 New York data set (see Figure 11). 
This full-resolution testing data set was acquired New York 
City, and it has a different geographical area and acquisition 
time than the training data. Again, the HQNR is used for the 
performance assessment. Table 9 shows that the traditional 
techniques outperform most of the ML-based methods. The 
best results are reported for TV. The SR-D holds the third 
position in the ranking. Considering all the methods, the 
traditional MTF-GLP-HPM-R and MTF-GLP-FS techniques 
show superior performance over the ML-based approaches 
except for the PanNet and A-PNN-FT, which attained the 
second and fourth positions, respectively. Among the ML-
based techniques, the PanNet and A-PNN-FT achieved the 
first two positions, thanks to their competitive generaliza-
tion abilities. Moreover, some ML-based methods, includ-
ing the MSDCNN, DiCNN, and PNN, have relatively large 
gaps compared with the PanNet and A-PNN-FT methods. 
The rest of the ML-based methods, such as the DRPNN, 
BDPN, and FusionNet, achieve a performance similar to the 
traditional BT-H, BDSD-PC, and C-GSA methods.

Figure 14 presents a visual comparison of all the com-
pared methods on the full-resolution WV3 New York 

TABLE 6. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE FULL-RESOLUTION WV2 RIO 
DATA SET (SEE FIGURE 11).

Dm DS HQNR

CS/MRA/VO

EXP 0.0374 0.0717 0.8936

BT-H 0.0601 0.071 0.8732

BDSD-PC 0.0653 0.0435 0.894

C-GSA 0.0664 0.0653 0.8727

SR-D 0.0153 0.0286 0.9566

MTF-GLP-HPM-R 0.026 0.0594 0.9161

MTF-GLP-FS 0.0269 0.0652 0.9097

TV 0.0332 0.0269 0.9407

ML

PanNet 0.0292 0.0171 0.9542

DRPNN 0.0629 0.0311 0.908

MSDCNN 0.0872 0.0498 0.8674

BDPN 0.0909 0.0486 0.8649

DiCNN 0.1043 0.0478 0.8529

PNN 0.1678 0.051 0.7897

A-PNN-FT 0.0379 0.0396 0.924

FusionNet 0.0647 0.0179 0.9185

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 7. THE AVERAGE RESULTS OF THE APPROACHES  
BELONGING TO THE BENCHMARK FOR THE REDUCED- 
RESOLUTION WV3 RIO TESTING DATA SET, I.E., ON THE  
FOUR WV3 TESTING DATA SETS IN TABLE 3 (B).

Q8 (±STANDARD 
DEVIATION)

SAM 
(±STANDARD 
DEVIATION)

ERGAS 
(±STANDARD 
DEVIATION)

CS/MRA/VO

GT 1 ± 0 0 ± 0 0 ± 0

EXP 0.5974 ± 0.0571 9.2031 ± 0.7655 9.3369 ± 0.4756

BT-H 0.8898 ± 0.0323 7.67 ± 0.7613 4.6132 ± 0.1695

BDSD-PC 0.8454 ± 0.0608 8.9376 ± 0.8568 5.0893 ± 0.2015

C-GSA 0.8695 ± 0.0436 8.8042 ± 0.8652 5.0183 ± 0.1327

SR-D 0.8693 ± 0.032 7.9449 ± 0.4946 5.0739 ± 0.2807

MTF-GLP- 
HPM-R

0.8625 ± 0.0499 9.4911 ± 1.1386 5.2141 ± 0.2881

MTF-GLP-FS 0.8533 ± 0.0526 9.1442 ± 0.9443 5.2496 ± 0.2077

TV 0.8031 ± 0.0929 8.9863 ± 0.8592 5.3569 ± 0.1948

ML

PanNet 0.9232 ± 0.0324 5.1447 ± 0.3995 3.1906 ± 0.2192

DRPNN 0.9203 ± 0.0323 5.1492 ± 0.35 3.2171 ± 0.2067

MSDCNN 0.9154 ± 0.0351 5.5887 ± 0.3471 3.3978 ± 0.1715

BDPN 0.9137 ± 0.0327 6.0121 ± 0.4713 3.6072 ± 0.2425

DiCNN 0.9265 ± 0.0283 5.1285 ± 0.3217 3.1894 ± 0.2106

PNN 0.9068 ± 0.0425 5.9259 ± 0.4544 3.4998 ± 0.1341

A-PNN-FT 0.9327 ± 0.0255 4.9125 ± 0.3794 3.088 ± 0.2312

FusionNet 0.9327 ± 0.0272 4.6482 ± 0.3508 2.9028 ± 0.1967

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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testing data set. As evident from the figure, the traditional 
TV method that achieves the best HQNR does not have the 
clearest fused image compared with those of the ML-based 

techniques (see the blue and green close-ups). The BDSD-
PC seems to have a blur effect and a clear spectral distor-
tion (mainly due to a color contrast change). A relevant 
spectral distortion also happens in the case of the pan-
sharpened SR-D product. Furthermore, the BT-H seems to 
produce precise spatial details even though its quantitative 
outcomes are not so promising. The visual products of the 
ML-based techniques are quite competitive without sig-
nificant spectral distortion. However, some methods, such 
as the DiCNN and PNN, generate significant blur effects 
and artifacts (such as outliers), indicating a weak visual ap-
pearance. Finally, the BDPN has the clearest spatial details 
without any artifacts. Note that the rest of the ML-based 
approaches yield similar visual performance, showing clear 
spatial details and good spectral preservation.

ASSESSMENT ON WORLDVIEW-4 DATA
In this section, we repeat the same three tests but use WV4 
data. Multiple reduced-resolution testing data sets are first 
evaluated. Then, another data set is used to assess the per-
formance at reduced resolution and at full resolution.

PERFORMANCE ON EIGHT REDUCED-RESOLUTION 
TESTING DATA SETS
After evaluating the performance of the eight-band WV2 
and WV3 data sets, this section mainly focuses on com-
paring the performance of the four-band WV4 data set ac-
quired over Acapulco. Although we have a different spectral 
band number with respect to the eight-band data sets in 
the “Assessment on WorldView 2 Data” and “Assessment 
on WorldView-3 Data” sections, the testing procedure is the 
same. Indeed, all the compared pansharpening methods 
are evaluated on eight reduced-resolution samples extract-
ed from the WV4 Acapulco testing data set in Table 3 (C) 
and Figure 10. These testing data sets share similar features 
with the training data.

Table 10 presents a quantitative comparison showing that 
the ML-based approaches yield better performance than the 
traditional techniques. The PanNet, belonging to the ML 
class, achieves the best indicators among all the methods. 
The rest of ML-based methods, i.e., the DRPNN, MSDCNN, 
BDPN, DiCNN, PNN, A-PNN-FT, and FusionNet, have simi-
lar performance, with small gaps among the three metrics 
exploited at reduced resolution. The DRPNN obtained the 
second-best Q4 and ERGAS indicators. The FusionNet got 
the second-best SAM. Among the traditional approaches, 
the MTF-GLP-HPM-R produced the best Q4, and the SR-D 
had the best SAM and ERGAS. The same conclusion as in the 
“Performance on 12 Reduced-Resolution Testing Data Sets” 
section about the relationship between the performance of 
ML-based approaches and traditional methods can be drawn.

PERFORMANCE ON THE REDUCED-RESOLUTION 
WORLDVIEW-4 ALICE SPRINGS DATA SET
This section investigates the performance of all the meth-
ods on a different reduced-resolution WV4 data set acquired 

TABLE 9. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE FULL-RESOLUTION WV3 NEW 
YORK DATA SET (SEE FIGURE 11).

Dm DS HQNR

CS/MRA/VO

EXP 0.0562 0.1561 0.7964

BT-H 0.0983 0.0829 0.8269

BDSD-PC 0.1554 0.0251 0.8234

C-GSA 0.1022 0.0747 0.8307

SR-D 0.0199 0.0369 0.944

MTF-GLP-HPM-R 0.0356 0.0679 0.8989

MTF-GLP-FS 0.0347 0.074 0.8939

TV 0.0234 0.0252 0.952

ML

PanNet 0.0376 0.0162 0.9468

DRPNN 0.1207 0.0392 0.8449

MSDCNN 0.1583 0.0557 0.7948

BDPN 0.1338 0.0563 0.8175

DiCNN 0.1023 0.0979 0.8098

PNN 0.1465 0.0835 0.7823

A-PNN-FT 0.051 0.0198 0.9302

FusionNet 0.0941 0.0882 0.826

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 8. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE REDUCED-RESOLUTION WV3 
NEW YORK DATA SET (SEE FIGURE 11).

Q8 SAM ERGAS

CS/MRA/VO

GT 1 0 0

EXP 0.6513 7.2118 8.1106

BT-H 0.9241 6.453 3.9714

BDSD-PC 0.9327 6.8388 3.8905

C-GSA 0.9213 6.6966 4.0503

SR-D 0.9113 6.6269 4.3472

MTF-GLP-HPM-R 0.9228 7.0038 4.0692

MTF-GLP-FS 0.9228 6.7650 4.0434

TV 0.9277 6.6213 4.063

ML

PanNet 0.9238 6.905 4.2365

DRPNN 0.9205 7.3887 4.2504

MSDCNN 0.9087 7.5139 4.4214

BDPN 0.918 7.7148 4.4522

DiCNN 0.8567 8.0256 5.5124

PNN 0.8849 12.6019 6.7233

A-PNN-FT 0.9132 7.6201 4.4536

FusionNet 0.8499 8.3823 6.0458

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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over Alice Springs (see Figure 11). Table 11 reveals that the 
DRPNN and PanNet ML-based methods achieve the best 
Q4 and SAM, respectively, while the traditional SR-D ap-
proach has the best ERGAS. Overall, the quantitative per-
formance of all the methods is similar. No approach obtains 

the best outcome on all the indexes. For example, some ML-
based techniques, e.g., the A-PNN-FT, PanNet, and PNN, 
have a better SAM than several traditional methods, e.g., 
the BDSD-PC, C-GSA, and MTF-GLP-FS, whereas some tra-
ditional methods, e.g., the BT-H and SR-D, obtain a better 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 14. Visual comparisons in natural colors of the evaluated approaches on the full-resolution WV3 New York data set (see Figure 11). 
The (a) EXP, (b) BT-H, (c) BDSD-PC, (d) C-GSA, (e) SR-D, (f) MTF-GLP-HPM-R, (g) MTF-GLP-FS, (h) TV, (i) PanNet, (j) DRPNN, (k) MSDCNN, 
(l) BDPN, (m) DiCNN, (n) PNN, (o) A-PNN-FT, and (p) FusionNet.
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SAM than some ML-based methods, such as the DRPNN, 
DiCNN, and FusionNet. Among the ML-based methods, 
although the DRPNN achieves the best Q4, its SAM value 
is significantly lower than that of the PanNet and A-PNN-
FT. The FusionNet yields the worst metrics among all the 
ML-based methods. Figure 15 provides a visual compari-
son of the pansharpening approaches, showing that all the 
methods obtain excellent results, with high spatial fidelity 
in the urban area. In particular, traditional methods, such 
as the BT-H, C-GSA, MTF-GLP-HPM-R, and MTF-GLP-FS, 
display products with clearer spatial details than the ML-
based methods (see the close-ups in Figure 15). Some other 
traditional methods, such as the SR-D and TV, show sig-
nificant blur (see the blur and green close-ups in Figure 15).

PERFORMANCE ON THE FULL-RESOLUTION 
WORLDVIEW-4 ALICE SPRINGS DATA SET
Table 12 reports the quantitative results for the WV4 Alice 
Spring data set using data at the original (full) resolution 
(see Figure 11). Note that due to the absence of a GT image, 
we employ no reference indicators, such as the HQNR, ,Dm  
and ,DS  to evaluate the quantitative performance. From the 
table, it is clear that some traditional and ML-based meth-
ods, such as the SR-D, TV, and A-PNN-FT, achieve the high-
est HQNR index values. Most of the ML-based approaches 
have better indexes than the rest of the traditional tech-
niques, i.e., the BT-H, BDSD-PC, and C-GSA. Among all the 
ML-based methods, the A-PNN-FT, PanNet, and DRPNN 
belong to the best performance class. Moreover, the MS-
DCNN, BDPN, and DiCNN represent the second-best class, 
while the rest of the ML-based approaches (i.e., the PNN and 
FusionNet) achieve the lowest performance. Finally, the A-
PNN-FT obtains the best ML-based quantitative outcome, 
corroborating the effectiveness of the fine-tuning strategy.

ASSESSMENT ON QUICKBIRD DATA
This section first investigates the performance on reduced-
resolution and full-resolution testing sets, similar to the 
analysis conducted previously. Then, it evaluates the ability 
of the compared networks to generalize with respect to the 
acquisition sensor. We exploit ML-based methods trained 
on the QB training set but evaluate them on another four-
band data set acquired by the Ikonos sensor.

PERFORMANCE ON SEVEN REDUCED-RESOLUTION 
TESTING DATA SETS
This section focuses on testing on seven reduced-resolu-
tion QB Indianapolis data sets that can be found in Fig-
ure 10. These testing data sets have a similar area and the 
same acquisition time as the training data set (see data ① 
in Table 3). Due to this, the ML-based approaches achieve 
better quantitative results than the compared traditional 
methods (see Table 13). The FusionNet produces the best 
Q4, SAM, and ERGAS indicators, and the PanNet, DRPNN, 
MSDCNN, DiCNN, and A-PNN-FT represent the second-
best class. Comparing the ML-based approaches, the BDPN 

TABLE 10. THE AVERAGE RESULTS OF THE APPROACHES  
BELONGING TO THE BENCHMARK FOR THE REDUCED- 
RESOLUTION WV4 ACAPULCO TESTING DATA SET, I.E.,  
ON THE EIGHT WV4 TESTING DATA SETS IN TABLE 3 (C).

Q4 (±STANDARD 
DEVIATION)

SAM 
(±STANDARD 
DEVIATION)

ERGAS 
(±STANDARD 
DEVIATION)

CS/MRA/VO

GT 1 ± 0 0 ± 0 0 ± 0

EXP 0.2638 ± 0.1579 3.9822 ± 0.5496 4.799 ± 0.9197

BT-H 0.6499 ± 0.0734 4.3582 ± 0.5607 4.633 ± 0.8555

BDSD-PC 0.6512 ± 0.068 3.6968 ± 0.5468 4.1906 ± 0.9251

C-GSA 0.6528 ± 0.0638 3.753 ± 0.5137 4.4599 ± 0.8186

SR-D 0.6564 ± 0.0895 3.6514 ± 0.4579 3.9887 ± 0.7342

MTF-GLP- 
HPM-R

0.6698 ± 0.0606 3.7980 ± 0.6864 4.2282 ± 0.8625

MTF-GLP-FS 0.6666 ± 0.0598 3.7776 ± 0.6527 4.2159 ± 0.8816

TV 0.5125 ± 0.1459 4.0344 ± 0.5386 4.26 ± 0.6768

ML

PanNet 0.6963 ± 0.0842 3.371 ± 0.4221 3.6088 ± 0.6313

DRPNN 0.681 ± 0.0845 3.4778 ± 0.4499 3.6706 ± 0.6433

MSDCNN 0.6739 ± 0.0849 3.4837 ± 0.4601 3.7052 ± 0.6661

BDPN 0.6535 ± 0.0834 3.5222 ± 0.4612 3.8269 ± 0.7144

DiCNN 0.6767 ± 0.0832 3.4555 ± 0.4453 3.7087 ± 0.6629

PNN 0.6793 ± 0.0822 3.4777 ± 0.4589 3.6894 ± 0.6613

A-PNN-FT 0.6787 ± 0.082 3.4271 ± 0.4425 3.6995 ± 0.6705

FusionNet 0.6759 ± 0.0805 3.3979 ± 0.4442 3.6842 ± 0.676

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 11. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE REDUCED-RESOLUTION WV4 
ALICE SPRINGS DATA SET (SEE FIGURE 11).

Q4 SAM ERGAS

CS/MRA/VO

GT 1 0 0

EXP 0.7901 4.588 5.8077

BT-H 0.9444 4.1988 3.2757

BDSD-PC 0.9431 4.7527 3.2996

C-GSA 0.9417 4.8812 3.3223

SR-D 0.9493 4.1597 3.0647

MTF-GLP-HPM-R 0.9432 5.1721 3.2724

MTF-GLP-FS 0.9432 4.9296 3.2437

TV 0.925 4.7857 3.6899

ML

PanNet 0.9486 3.8737 3.4154

DRPNN 0.9521 4.7059 3.2533

MSDCNN 0.9266 4.517 3.9181

BDPN 0.9439 4.4687 3.557

DiCNN 0.9347 4.8219 3.6978

PNN 0.9364 4.4324 3.5983

A-PNN-FT 0.9511 3.9217 3.1598

FusionNet 0.9261 4.9779 3.9561

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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has relatively worse performance than the others but still 
outperformed the traditional techniques.

PERFORMANCE ON THE REDUCED-RESOLUTION 
QUICKBIRD SAN FRANCISCO DATA SET
These results assess all the methods on another reduced-res-
olution data set, acquired by the QB sensor over San Fran-
cisco (see Figure 11). In Table 14, we observe that the tradi-
tional approaches have better quantitative results than the 
ML-based methods (except for the PanNet). The C-GSA and 
BT-H approaches yield the lowest and second-lowest ERGAS, 
respectively. Among the ML-based methods, the PanNet has 
the best Q4, SAM, and ERGAS indicators, even better than 
those of all the traditional approaches. None of the other 
ML-based methods generates the best outcomes on all the 
indexes. The quantitative results for the rest of the ML-based 
approaches are not stable. For instance, the DRPNN yields 
the second-best Q4 among all the ML-based methods, but its 
SAM value is clearly larger than that of the FusionNet.

PERFORMANCE ON THE FULL-RESOLUTION  
QUICKBIRD SAN FRANCISCO DATA SET
The QB San Francisco data set in Figure 11 is also used at 
full resolution. From Table 15, reporting all the no-reference 

indexes, it is easy to see that the PanNet method obtains 
the best no-reference index, i.e., the HQNR, which means 
the best quantitative outcome. The SR-D traditional meth-
od and the ML-based FusionNet rank in second and third 
place, respectively. Overall, the traditional methods (except 
for the SR-D and TV) obtain poorer performance than most 
of the ML-based methods. The HQNR achieved by the DiC-
NN method is the lowest, demonstrating that the learned 
weights of the DiCNN network cannot fit the problem pre-
sented during the testing phase.

Figure 16 visually compares all the methods on the full-
resolution QB San Francisco data set. From the figure, the 
ML-based methods, i.e., the PanNet and FusionNet, retain 
the clearest details, consistent with their HQNR perfor-
mance in Table 15. Most of the other ML-based methods, 
such as the DRPNN, MSDCNN, BDPN, and A-PNN-FT, 
preserve the spatial content. Only the DiCNN and PNN 
seem to have relatively noticeable blur effects and artifacts. 
Among the traditional methods, the BDSD-PC shows a 
significant spectral distortion. The two MTF-based tech-
niques, i.e., the MTF-GLP-HPM-R and MTF-GLP-FS, obtain 
high spatial fidelity, although they fail to generate promis-
ing HQNR values. Finally, TV and the SR-D have a spatial 
preservation similar to that of the A-PNN-FT.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIGURE 15. Visual comparisons in natural colors of the evaluated approaches on the reduced-resolution WV4 Alice Springs data set (see 
Figure 11). The (a) PAN, (b) EXP, (c) BT-H, (d) BDSD-PC, (e) C-GSA, (f) SR-D, (g) MTF-GLP-HPM-R, (h) MTF-GLP-FS, (i) TV, (j) PanNet, (k) 
DRPNN, (l) MSDCNN, (m) BDPN, (n) DiCNN, (o) PNN, (p) A-PNN-FT, (q) FusionNet, and (r) GT.
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SENSOR GENERALIZATION ABILITY ASSESSED ON THE 
REDUCED-RESOLUTION IKONOS DATA SET
This section evaluates the network generalization ability for 
all the compared ML-based methods. The latter are trained 
on the four-band QB training set used in the previous sec-
tions. Then, we directly test the ML-based approaches, run-
ning them on a four-band Ikonos data set acquired over 
Toulouse. We also compare the ML-based methods with 
some traditional techniques. From Table 16, it is clear that 
the BT-H, TV, and the SR-D achieve the best Q4, SAM, and 
ERGAS, respectively. In contrast, the ML-based methods 
have poor performance, demonstrating weak network gen-
eralization. Overall, the traditional methods outperform 
all the ML-based approaches. Among the ML-based tech-
niques, the PanNet and A-PNN-FT yield the best quanti-
tative results on the three quality metrics. The other ML-
based methods obtain worse performance.

Figure 17 depicts the fused products, showing the com-
petitive performance for some traditional methods, i.e., 
the BT-H, C-GSA, MTF-GLP-HPM-R, and MTF-GLP-FS. 
Although the SR-D has the best ERGAS, some artifacts ap-
pear in the related outcome (see the blue close-up in Fig-
ure 17). Among the ML-based methods, all the compared 
approaches have similar spatial details. However, some of 
them, such as the DRPNN, DiCNN, and FusionNet, have a 
significant spectral distortion (see the color of the river in 
Figure 17). This is also corroborated by the SAM values in 
Table 16.

SENSOR GENERALIZATION ABILITY ASSESSED  
ON THE FULL-RESOLUTION IKONOS DATA SET
The analysis in the previous section is performed at full 
resolution, exploiting the Ikonos Toulouse data set. The A-
PNN-FT yields the best overall performance (see Table 17). 
Indeed, thanks to the use of the fine-tuning strategy, the 
A-PNN-FT has a better network generalization ability than 
the other ML techniques. This is a good hint at future de-
velopments that could include this strategy to increase the 
generalization ability. Another ML approach achieving 
competitive performance with respect to traditional meth-
ods is the PanNet. Among the traditional methods, the 
SR-D obtains the highest performance. The C-GSA and TV 
also achieve promising results. Finally, it is worth point-
ing out that despite the HQNR index representing a state-
of-the-art quality index, more research is needed on this 
topic [4]. The difficulty of ranking approaches belonging to 
different philosophies (e.g., classical against ML methods) 
is evident. Thus, results at reduced and full resolution can 
hardly be compared when referring to methods in differ-
ent classes.

DISCUSSIONS
This section is devoted to final discussions about the ML-
based approaches. Some aspects, such as convergence, test-
ing and training times, the number of parameters, and so 
forth, are detailed in the following.

TABLE 12. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE FULL-RESOLUTION WV4 ALICE 
SPRINGS DATA SET (SEE FIGURE 11).

Dm DS HQNR

CS/MRA/VO

EXP 0.0362 0.0322 0.9328

BT-H 0.0585 0.0625 0.8826

BDSD-PC 0.0644 0.0435 0.895

C-GSA 0.0668 0.0796 0.8589

SR-D 0.0109 0.0331 0.9564

MTF-GLP-HPM-R 0.0229 0.0608 0.9177

MTF-GLP-FS 0.023 0.0623 0.9161

TV 0.0251 0.0237 0.9518

ML

PanNet 0.012 0.0429 0.9456

DRPNN 0.0223 0.0333 0.9452

MSDCNN 0.0221 0.0641 0.9152

BDPN 0.026 0.0498 0.9255

DiCNN 0.0455 0.0358 0.9203

PNN 0.0195 0.0722 0.9097

A-PNN-FT 0.0195 0.0306 0.9505

FusionNet 0.0668 0.0274 0.9076

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 13. THE AVERAGE RESULTS OF THE APPROACHES 
BELONGING TO THE BENCHMARK FOR THE REDUCED- 
RESOLUTION QB INDIANAPOLIS TESTING DATA SET, I.E.,  
ON THE SEVEN QB TESTING DATA SETS IN TABLE 3 (D).

Q4 (±STANDARD 
DEVIATION)

SAM 
(±STANDARD 
DEVIATION)

ERGAS 
(±STANDARD 
DEVIATION)

CS/MRA/VO

GT 1 ± 0 0 ± 0 0 ± 0

EXP 0.749 ± 0.017 4.5865 ± 0.4136 4.0991 ± 0.166

BT-H 0.8729 ± 0.0102 3.7376 ± 0.4094 3.0172 ± 0.1599

BDSD-PC 0.8643 ± 0.0107 4.0724 ± 0.5258 3.2261 ± 0.1212

C-GSA 0.8307 ± 0.0367 4.4207 ± 0.7011 3.5343 ± 0.4436

SR-D 0.8789 ± 0.0091 3.6989 ± 0.3694 2.9774 ± 0.1687

MTF-GLP-
HPM-R

0.8628 ± 0.0151 3.9175 ± 0.7783 3.2746 ± 0.4262

MTF-GLP-FS 0.8513 ± 0.0152 4.0604 ± 0.7747 3.3176 ± 0.105

TV 0.8049 ± 0.0371 4.8419 ± 0.3162 3.9387 ± 0.4611

ML

PanNet 0.9575 ± 0.0072 1.9853 ± 0.1919 1.7365 ± 0.088

DRPNN 0.951 ± 0.0086 2.0873 ± 0.1875 1.8378 ± 0.0916

MSDCNN 0.9509 ± 0.0088 2.0771 ± 0.181 1.8565 ± 0.1025

BDPN 0.9238 ± 0.0113 2.5859 ± 0.1981 2.3305 ± 0.1474

DiCNN 0.951 ± 0.0088 2.0704 ± 0.1793 1.8764 ± 0.1086

PNN 0.9487 ± 0.0085 2.1556 ± 0.185 1.9054 ± 0.1048

A-PNN-FT 0.9585 ± 0.0074 1.8825 ± 0.1676 1.7086 ± 0.0963

FusionNet 0.96 ± 0.0082 1.8298 ± 0.1391 1.647 ± 0.0918

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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CONVERGENCE
Figure 18 exhibits the training loss and validation loss of 
all the compared ML-based approaches. The goal of this 
analysis is to show that the ML approaches converge but 
avoid the overfitting phenomenon. Observing the curves 
in Figure 18, we state that the goal is achieved by all the 
compared methods.

TESTING TIME
To evaluate the testing time of all the compared pansharp-
ening methods, we employ four reduced-resolution WV3 
testing data sets (see the “Performance on Four Reduced-
Resolution Testing Data Sets” section for more details). Ta-
ble 18 reports the average testing time for all the compared 
methods. Note that the traditional approaches are imple-
mented on the CPU, while the ML-based methods exploit 
the GPU. From the table, it is easy to note that some tra-
ditional methods, such as the BT-H, BDSD-PC, MTF-GLP-
HPM-R, and MTF-GLP-FS, run very fast, even though they 
are tested on the CPU. Other traditional approaches, i.e., 
the SR-D and TV, take more time (in particular, TV). The 
testing times of the ML-based methods are quite close (less 
than 1 s) to the very fast traditional techniques. This is be-
cause ML approaches use the GPU.

TRAINING TIME, NUMBER OF PARAMETERS, AND  
GIGA FLOATING-POINT OPERATIONS PER SECOND
We also investigate the training times of all the ML-based 
methods to evaluate the cost of the training. From the first 
row in Table 19, it is clear that the slowest method, i.e., the 
BDPN, needs almost one day to train the network on the 
WV3 training data set, while the fastest approach, i.e., the 
PanNet, can complete the training phase in 2 h. Looking at 
the number of parameters (the second row in Table 19), the 
BDPN has the highest value, while the DiCNN has the low-
est. Finally, by evaluating the giga floating-point operations 
per second, the BDPN and DiCNN show extreme values.

HISTOGRAM COMPARISON OF ERROR MAPS
Figure 19 displays histograms of the errors between each 
fused image and the GT evaluated on the four reduced-
resolution WV3 data sets used in the “Performance on 
Four Reduced-Resolution Testing Data Sets” section. From 
the figure, we see that the A-PNN-FT and FusionNet have 
smaller standard deviations, indicating better overall re-
sults for this test case. Moreover, the range proportion (RP) 
within [ . , . ]0 02 0 02-  (the larger the RP, the better the per-
formance) has been reported in Figure 19. Again, the best 
values are obtained by the FusionNet and A-PNN-FT.

PERFORMANCE VERSUS THE NUMBER  
OF PARAMETERS
Figure 20 investigates the relationship between quantita-
tive performance and the number of parameters, aiming 
to illustrate the effectiveness of the compared ML-based 
methods. Again, four reduced-resolution data sets acquired 

by the WV3 sensor, which were also used in the “Perfor-
mance on Four Reduced-Resolution Testing Data Sets” sec-
tion, are exploited. The quality is measured using the three 

TABLE 14. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE REDUCED-RESOLUTION QB 
SAN FRANCISCO DATA SET (SEE FIGURE 11).

Q4 SAM ERGAS

CS/MRA/VO

GT 1 0 0

EXP 0.5759 9.1351 10.9039

BT-H 0.8942 7.5545 5.2697

BDSD-PC 0.8788 8.745 5.7536

C-GSA 0.8961 7.4711 5.2337

SR-D 0.8831 7.8766 5.5558

MTF-GLP-HPM-R 0.8919 8.489 5.4754

MTF-GLP-FS 0.877 8.7026 5.7855

TV 0.8802 8.4317 6.0476

ML

PanNet 0.9074 6.9841 5.3314

DRPNN 0.8969 8.253 5.9467

MSDCNN 0.8768 7.5988 5.6965

BDPN 0.883 8.4378 5.9962

DiCNN 0.8062 11.211 8.7013

PNN 0.8301 10.1118 6.8375

A-PNN-FT 0.8586 7.8767 6.2049

FusionNet 0.8614 7.3459 6.342

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 15. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE FULL-RESOLUTION QB SAN 
FRANCISCO DATA SET (SEE FIGURE 11).

Dm DS HQNR

CS/MRA/VO

EXP 0.047 0.1571 0.8033

BT-H 0.0925 0.0925 0.8236

BDSD-PC 0.1383 0.0476 0.8207

C-GSA 0.0818 0.1114 0.8159

SR-D 0.0144 0.0362 0.9499

MTF-GLP-HPM-R 0.0343 0.1126 0.857

MTF-GLP-FS 0.0372 0.1323 0.8354

TV 0.0269 0.0513 0.9233

ML

PanNet 0.0224 0.0264 0.9518

DRPNN 0.0662 0.021 0.9142

MSDCNN 0.0771 0.0268 0.8982

BDPN 0.0621 0.0708 0.8715

DiCNN 0.0939 0.1244 0.7933

PNN 0.1071 0.0671 0.833

A-PNN-FT 0.0364 0.0303 0.9344

FusionNet 0.0388 0.0139 0.9479

Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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quality indexes at reduced resolution (i.e., the Q8, ERGAS, 
and SAM). Optimal results are plotted in the top-left area 
for the Q8, indicating high Q8 values with few parameters. 
For the ERGAS and SAM, the optimal area is located in 
the bottom-left part of the plot. The closer the methods are 
to the optimal areas, the better the tradeoff between qual-
ity and computational burden. Examining Figure 20, we 
note that the A-PNN-FT and FusionNet achieve excellent 
performance on the data used in this analysis for all three 
quality metrics.

CONCLUDING REMARKS
In this article, we presented the first critical comparison 
of pansharpening approaches based on the ML para-
digm. A complete review of the ML literature was con-
ducted. Then, eight state-of-the-art solutions for sharp-
ening MS images using PAN data were compared. To this 
end, a toolbox exploiting a common software platform 
and open source library for all the ML approaches was 
developed. All the ML approaches were implemented, 
exploiting the common software platform (we selected 
PyTorch for this). The developed toolbox will be distrib-
uted free to the community. A careful tuning phase was 
performed to ensure the highest performance for each of 
the compared approaches.

A broad experimental analysis, exploiting different test 
cases, was conducted with the aim of assessing the perfor-
mance of each ML-based state-of-the-art approach. Widely 
used sensors for pansharpening were involved (i.e., WV2, 
WV3, WV4, QB, and Ikonos). Assessments at reduced reso-
lution and full resolution were considered. The comparison 
of ML-based approaches was enlarged to state-of-the-art 
methods belonging to different paradigms (i.e., CS, MRA, 
and VO). The generalization ability of the networks with 
respect to changes of the acquisition sensor and scenario 
was also reported. Finally, a wide computational analysis 
was presented in the “Discussions” section.

ML-based approaches demonstrated outstanding per-
formance in scenarios close to those during the training 
phase. Reduced performance (in particular, in compari-
son with recent state-of-the-art traditional methods) was 
observed when a completely different scenario was used 
in the testing phase, thus showing a limited generaliza-
tion ability of these approaches. However, fine-tuning 
proved to be of value in remedying the issue, guarantee-
ing high performance even in these challenging test cases. 
The computational burden, measured during the testing 
phase, of the compared ML approaches can be considered 
adequate, even in comparison with the fastest tradition-
al methods. At any rate, the training phase is still time-
consuming for several approaches, even requiring one day 
(see the BDPN case) for training with a relatively small 
number of samples.

Finally, we want to draw some guidelines for the devel-
opment of new ML-based pansharpening approaches. In-
deed, focusing on the analyzed ML-based pansharpening 

TABLE 16. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE REDUCED-RESOLUTION IKONOS 
TOULOUSE DATA SET (SEE FIGURE 11).

Q4 SAM ERGAS

CS/MRA/VO

GT 1 0 0

EXP 0.4795 5.1823 6.3953

BT-H 0.912 3.4491 2.9962

BDSD-PC 0.9094 2.9576 2.9309

C-GSA 0.9006 2.9667 3.1751

SR-D 0.9108 2.9571 2.8708

MTF-GLP-HPM-R 0.9105 3.1454 2.9727

MTF-GLP-FS 0.9076 3.0906 3.0104

TV 0.9023 2.8455 2.9508

ML

PanNet 0.8826 3.901 3.6584

DRPNN 0.8884 5.9745 4.2175

MSDCNN 0.8736 4.1837 3.5057

BDPN 0.8783 4.0874 3.7266

DiCNN 0.8143 6.2024 5.5863

PNN 0.8406 4.6105 3.9881

A-PNN-FT 0.8838 3.6224 3.3742

FusionNet 0.8159 4.2536 4.071

The ML-based approaches are trained on the QB data set.
Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.

TABLE 17. A QUANTITATIVE COMPARISON OF THE OUTCOMES 
OF THE BENCHMARK ON THE FULL-RESOLUTION IKONOS 
TOULOUSE DATA SET (SEE FIGURE 11).

Dm DS HQNR

CS/MRA/VO

EXP 0.056 0.1723 0.7813

BT-H 0.069 0.0812 0.8554

BDSD-PC 0.088 0.0617 0.8557

C-GSA 0.0641 0.0371 0.9012

SR-D 0.0163 0.0522 0.9323

MTF-GLP-HPM-R 0.0275 0.0853 0.8896

MTF-GLP-FS 0.0285 0.0908 0.8834

TV 0.0472 0.0307 0.9235

ML

PanNet 0.0239 0.0344 0.9425

DRPNN 0.0723 0.0197 0.9095

MSDCNN 0.083 0.0261 0.893

BDPN 0.0699 0.0405 0.8924

DiCNN 0.1507 0.0156 0.8361

PNN 0.0823 0.0453 0.8761

A-PNN-FT 0.0282 0.0194 0.9529

FusionNet 0.0662 0.0263 0.9093

The ML-based approaches are trained on the QB data set.
Bold: the best among all the compared methods; underline: the best among all the 
ML-based methods.
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approaches, it can be remarked that skip connections can 
help ML-based methods obtain faster convergence. The de-
sign of multiscaled architectures (including bidirectional 
structures) can support better extraction and learning of 
features. Furthermore, fine-tuning and learning in a specific 

domain (i.e., not in the original image domain) can increase 
the generalization ability of the networks.

However, challenges still exist, representing room for 
improvement for researchers in the future. Specifically, 
as pointed out, the computational burden is still an open 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 16. Visual comparisons in natural colors of the evaluated approaches on the full-resolution San Francisco data set (see Figure 11). 
The (a) EXP, (b) BT-H, (c) BDSD-PC, (d) C-GSA, (e) SR-D, (f) MTF-GLP-HPM-R, (g) MTF-GLP-FS, (h) TV, (i) PanNet, (j) DRPNN, (k) MSDCNN, 
(l) BDPN, (m) DiCNN, (n) PNN, (o) A-PNN-FT, and (p) FusionNet.
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issue pushing researchers to develop networks with fewer 
parameters (even getting fast convergence) while ensuring 
a network’s effectiveness. Generalization is limited for most 

new developments in ML for pansharpening. This is a cru-
cial point to be addressed to move toward ML products for 
remote sensing image fusion in a commercial environment.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

FIGURE 17. Visual comparisons in natural colors of the evaluated approaches on the reduced-resolution Ikonos Toulouse data set (see 
Figure 11). The (a) PAN, (b) EXP, (c) BT-H, (d) BDSD-PC, (e) C-GSA, (f) SR-D, (g) MTF-GLP-HPM-R, (h) MTF-GLP-FS, (i) TV, (j) PanNet, 
(k) DRPNN, (l) MSDCNN, (m) BDPN, (n) DiCNN, (o) PNN, (p) A-PNN-FT, (q) FusionNet, and (r) GT.

TABLE 18. THE COMPARISON OF TESTING TIMES (IN SECONDS) FOR ALL THE COMPARED METHODS.

EXP BT-H BDSD-PC C-GSA SR-D MTF-GLP-HPM-R MTF-GLP-FS TV

Testing time 0.007 0.092 0.234 1.305 7.138 0.246 0.314 31.232

PanNet DRPNN MSDCNN BDPN DiCNN PNN A-PNN-FT FusionNet

Testing time 0.339 0.337 0.442 0.493 0.37 0.456 0.921 0.376

Note that the traditional methods (first row) are implemented on the CPU, and the ML-based approaches (second row) exploit the GPU. The times are computed on four reduced-
resolution WV3 testing data sets.

TABLE 19. THE COMPARISON OF THE TRAINING TIMES (HOURS: MINUTES), NUMBER OF PARAMETERS, AND GIGA FLOATING-
POINT OPERATIONS PER SECOND (GFLOPS) FOR ALL THE COMPARED ML-BASED METHODS.

PanNet DRPNN MSDCNN BDPN DiCNN PNN A-PNN-FT FusionNet

Training time 1:46 4:42 3:08 23:22 8:21 8:4 7:55 3:01

Number of parameters 78,504 433,465 228,556 1,484,412 47,369 104,36 104,36 76,308

GFlops 0.32 1.78 0.91 3.8 0.19 0.29 0.22 0.32

The WV3 training data set is used as the reference for this evaluation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University. Downloaded on August 08,2022 at 01:07:40 UTC from IEEE Xplore.  Restrictions apply. 



MONTH 2022    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        31 

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.025

0.02

0.015

0.01

0.005

0

0.005

0.004

0.003

0.002

0.001

Lo
ss

Lo
ss

Lo
ss

Lo
ss

Lo
ss

Lo
ss

0.006

0.005

0.004

0.003

0.002

0.001

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0 100 200 300
Epochs

400 0 50 100 300150 200
Epochs

250

0 100 200 300

Epochs

400 500 0 200 400 600

Epochs

800 1,000

0 2,000 4,000 6,000
Epochs

8,000 12,00010,0000 1,000 2,000 3,000
Epochs

4,000 5,000

(a) (b)

(c) (d)

(f)(e)

Training Loss
Validation Loss

Training Loss
Validation Loss

Training Loss
Validation Loss

Training Loss
Validation Loss

Training Loss
Validation Loss

Training Loss
Validation Loss

0.003

0.025

0.015

0.01

0.005

0.02

Lo
ss

Lo
ss

0.0014

0.0012

0.0008

0.0006

0.0004

0.001

0 50 100 150
Epochs

200 400250 300 3500 2,000 4,000 6,000
Epochs

(h)(g)

8,000 10,000

Training Loss
Validation Loss

Training Loss
Validation Loss

FIGURE 18. The convergence curves for all the compared ML-based methods. The corresponding loss functions are reported in Table 2. 
The (a) PanNet, (b) DRPNN, (c) MSDCNN, (d) BDPN, (e) DiCNN, (f) PNN, (g) A-PNN-FT, and (h) FusionNet. 
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FIGURE 19. The comparison of the error histograms for all the ML-based methods. The error is computed between each fused image and 
the GT on four reduced-resolution WV3 data sets, which were also used in the “Performance on Four Reduced-Resolution Training Data 
Sets” section. Synthetic indexes, such as the standard deviation and range proportion (RP), are reported. The best results are in bold-
face. (a) The PanNet (standard deviation/RP = 0.019/0.827). (b) The DRPNN (0.019/0.829). (c) The MSDCNN (0.020/0.818). (d) The BDPN 
(0.022/0.804). (e) The DiCNN (0.019/0.831). (f) The PNN (0.021/0.807). (continued )
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FIGURE 19. (continued ) (g) The A-PNN-FT (0.018/0.836). (h) The FusionNet (0.017/0.849).
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The original idea of working at reduced resolution to ob-
tain labels to train networks is helpful. However, it is based 
on the hypothesis of “invariance among scales,” which not 
be valid. Thus, as noted in our literature review, new (un-
supervised) approaches based on loss functions measuring 
similarities at full resolution have been developed. This is 
an interesting research line, but developments are still re-
quired, even considering the need for new studies about 
more accurate quality metrics at full resolution.
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