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Abstract— Hyperspectral images (HSIs) are crucial for many
research works. Spectral super-resolution (SSR) is a method
used to obtain high-spatial-resolution (HR) HSIs from HR multi-
spectral images. Traditional SSR methods include model-driven
algorithms and deep learning. By unfolding a variational method,
this article proposes an optimization-driven convolutional neural
network (CNN) with a deep spatial-spectral prior, resulting in
physically interpretable networks. Unlike the fully data-driven
CNN, auxiliary spectral response function (SRF) is utilized to
guide CNNs to group the bands with spectral relevance. In
addition, the channel attention module (CAM) and the reformu-
lated spectral angle mapper loss function are applied to achieve
an effective reconstruction model. Finally, experiments on two
types of data sets, including natural and remote sensing images,
demonstrate the spectral enhancement effect of the proposed
method, and also, the classification results on the remote sensing
data set verified the validity of the information enhanced by the
proposed method.

Index Terms— Convolutional neural network (CNN), hyper-
spectral image (HSI), optimization driven, spectral response
function (SRF), spectral super-resolution (SSR).

I. INTRODUCTION

YPERSPECTRAL (HS) imaging is a technique used to

explore the spectral characteristics of objects completely
via the fine resolution of scene radiance. Hyperspectral images
(HSIs) processing, such as segmentation [1], classification [2],
detection [3], [4], and tracking [5], have gained increasing
attention due to the rich spectral information. HS imaging has
also been developed for numerous applications ranging from
remote sensing [6]-[8] to medical imaging [9].
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HS sensors acquire scene radiance with numerous spectral
bands in a fine wavelength range. However, less energy
radiance is sensed by each detector element when the spec-
tral resolution is high. The sensors require a long exposure
time to obtain an acceptable signal-to-noise-ratio of each
band. Compared with red—green—blue (RGB) and multispectral
images (MSIs), HSIs always lack fine spatial resolution. This
limitation affects the availability of HSIs for applications that
require high spatial resolution (HR). Many researchers have
proposed the direct reconstruction of HR HSIs by image super-
resolution (SR) of low-spatial-resolution (LR) HSIs to enhance
the spatial details of HSIs. Akgun et al. [10] proposed a model
that can represent the HS observations as weighted linear
combinations and used a set-theoretic method as a solution.
Gu et al. [11] proposed an SR algorithm that uses an indirect
approach based on spectral unmixing and designed learning-
based SR mapping as the backpropagation neural network. The
aforementioned methods only utilize LR HSIs to reconstruct
HR HSIs. However, poor spatial enhancement is observed
when the ratio between LR and HR is large.

With the development of detector elements, abundant sen-
sors are currently designed to achieve a good representation
of spatial details and temporal variations. However, these
sensors capture only three or four spectral bands for a very
HR (<10 m), especially for remote sensing satellites, such as
Sentinel-2, GaoFen-2, QuickBird, and WorldView. Although
MSIs generally have an HR, they cannot completely represent
the spectral characteristics of the object by using only a few
spectral channels.

Combining the respective advantages of HSIs and MSIs,
some researchers use HR MSIs as auxiliary data to improve
the spatial resolution of HSIs. Hardie er al. [12] presented a
novel maximum a posteriori (MAP) estimator for enhancing
the spatial resolution. The MAP estimator used a spatially
varying statistical model based on vector quantization to
exploit localized correlations. Kawakami er al. [13] fused
HSIs with images from RGB cameras by initially applying
an unmixing algorithm to the HS input and then regarding
the unmixing problem as the search for input factorization.
Akhtar et al. [14] proposed a fusion algorithm of MSIs and
HSIs using nonparametric Bayesian sparse representation.
Meng et al. [15] proposed an integrated relationship model
that relates to the HSIs and multisource HR observations
based on the MAP framework. Palsson et al. [16] proposed
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a novel method for the fusion of MSIs and HSIs, which is
performed in the low-dimensional PC subspace; thus, only
the first few PCs must be estimated instead of all spectral
bands. The fusion-based method can substantially improve the
spatial resolution of the image through the HR spatial detail
injection. However, the HR MSIs corresponding to the LR
HSIs covering the same area and acquired at a similar time
are not always easily accessible in many cases. Although HR
MSI data were available, the registration and preprocessing of
multisensor data are difficult. Besides, this difficulty affects
the accuracy and performance of algorithms.

The spectral super-resolution (SSR) methods are proposed
to overcome the unavailability of HRHS images by increas-
ing the spectral resolution of MS images without auxiliary
HS images, which focuses on the spectral transformation
rather than the spatial resolution enhancement. In 2008,
Parmar et al. [17] first reconstructed HS image from RGB
image by sparse recovery. Inspired by this research, Arad and
Ben-Shahar [18] proposed the computation of the dictionary
representation of each RGB pixel by using the orthogonal
match pursuit algorithm. Wu et al. [19] substantially improved
Arad’s method by pretraining an overcomplete dictionary as
anchor points to perform a nearest neighbor search based
on the A+ algorithm proposed by Timofte et al. [20] from
spatial SR. In 2018, Akhtar and Mian [21] modeled nat-
ural spectra under Gaussian processes and combined them
with RGB images to recover HS images. Without dictionary
learning, Nguyen et al. [22] explored a strategy to train
a radial basis function network that presents the spectral
transformation to recover the scene reflectance using train-
ing images. Deep learning, especially convolutional neural
network (CNN), has recently attracted increasing attention
and has been demonstrated to outperform most traditional
approaches in areas, such as segmentation [23], classifica-
tion [24], denoising [25], and spatial SR [26]. Inspired by
the semantic segmentation architecture Tiramisu [27], Gal-
liani et al. [28] proposed DenseUnet with 56 convolutional
layers to show good performance. To prove that comparable
performance can be achieved by shallow learning, Can et al.
[29] proposed a moderately deep residual CNN to recover
spectral information of RGB images. Shi ef al. [30] designed
a deep CNN with dense blocks and a novel fusion scheme
to deal with the situation when the spectral response function
(SRF) is unknown. Optimizing bands pixel-by-pixel, Gewali
et al. [31] proposed a deep residual CNN to learn both the
optimized MS bands and the transformation to reconstruct HS
spectra from MS signals. Arun et al. [32] explored a CNN-
based encoding—decoding architecture to model the spatial—
spectral prior to improve recovery. However, the deep learning-
based model is similar to a data-driven black box with the
ideal capability of feature learning and nonlinear mapping.
Recently, interpretability specific to the problem has been
identified as an important part of CNN development. Some
research works have attempted to achieve this purpose. Most
of them are trying to combine deep learning with physical
model-driven methods. By learning a regularization term for
the variational model or MAP framework, CNNs are utilized to
achieve some physical mappings as approximate operator and
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denoiser in many image processing tasks, such as denoising
[33], [34], compressive sensing [35], data fusion [36], and
deblurring [37]. However, these methods just utilized the pre-
trained CNN prior but did not update it in model-driven opti-
mization. Also, the training of those algorithms is broken into
two stages: learning optimization and variational optimization,
which is difficult to inherit the data-driven advantages of deep
learning.

In this article, an end-to-end optimization-driven CNN
with the spectral degradation model is built and different
spectral ranges are grouped to be reconstructed based on
SRFs. The SRF is utilized to guide the CNN group in the
spectral similar bands to further enhance spectral information.
Rather than alternately running a variational model and CNN,
an optimization-driven CNN with deep spatial-spectral prior
and parametric self-learning is proposed. The proposed CNN
repeatedly updates the intermediate HS image in an end-to-end
manner. The contributions are as follows.

1) An end-to-end optimization-driven CNN is proposed by
combining the data-driven method with the optimization
algorithm to improve the model interpretability. The
channel attention module (CAM) is introduced in the
proposed model to embed the parameter self-learning
considering spectral differences of bands into CNN.

2) The SRF is employed as a guide to aid CNN in grouping
suitable spectral bands to reconstruct HS information
and learn good spectral details from the true spectral
channel ranges in the proposed CNN.

3) The spatial-spectral convolutional layers are used to
model deep spatial-spectral prior. Also, the proposed
network employed a fast spatial-spectral loss function
reformulated from L1 and spectral angle mapper (SAM)
losses to reach quick convergence and good spatial—
spectral constraints.

The remaining part of this article is organized as follows.
Section II describes the degradation model and derives the
SSR algorithm based on the variational model to the proposed
optimization-driven CNN. Section III presents the experiments
on two types of data sets, including five data sets from natural
to remote sensing images, and some discussions of deep
learning-based methods are also made. Finally, we draw some
conclusions in Section IV.

II. PROPOSED METHOD

First, the spectral degradation between MS and HS imaging
is modeled in this section. Based on this model, the SSR
problem is formulated and split into two subproblems.
Finally, by learning physical mappings using CNNs, the pro-
posed SSR network with a joint spatial-spectral HSI prior
(HSRnet) is comprehensively demonstrated. The framework
of the proposed method is shown in Fig. 1. The pro-
posed framework can be divided into two parts, including
an initial restoration network and optimization stages with
attention-based parametric self-learning and spatial-spectral
networks (SSNs), which followed the data flow in model-based
methods.
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Fig. 1. Framework of the proposed HSRnet.

A. Model Formulation

Let X € R"V*H*C represent the observed HSI, where C
is the number of the spectral channels and W and H are the
width and height, respectively, and ¥ € RV > represent the
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observed MSI, where ¢ < C is the number of multispectral
bands, specifically for RGB image, with ¢ = 3. Varying in
SREF, the sensors obtain different MS or HS data with different
bands. A transformation matrix ® € R°*C can be used to
describe the spectral degradation between MS and HS imaging
as follows:

Y =®X. (1)

The spectral transform matrix is closely related to SREF,
which can be approximately estimated by some methods,
such as Hysure [38] and RWL1-SF [39]. According to (1),
the relationship between MSIs and HSIs is illuminated.
However, in SSR, obtaining a high-dimensional cube from
low-dimensional data is an underdetermined problem. The
high-dimensional HSIs can be approximately predicted by
adopting some priors to a minimization problem to constrain
the solution space as follows:

X= arg min [|Y — oX|* + yR(X) )
where y is a tradeoff parameter and R(-) is a regularization
function. As in (2), the minimization problem is constrained
by two parts. The first term is the data fidelity term that
limits the solution according to the degradation model, and
the second regularization term constrains the predicted X
with an HSI prior.

The variable splitting technique can be employed to further
solve this minimization problem and separate the two terms in
(2). An auxiliary variable H is introduced to reformulate (2)
to obtain a constrained optimization problem, which is shown
as follows:

X :argm}}n Yy — <I>X||2+yR(H), st. H=X. (3)

According to the half-quadratic splitting method, the cost
function is then transformed into
LX,H)=|lY - ®X|* + u|H — X|* + yR(H) (4

where u is a penalty parameter with various values in different
iterations. Using the variable splitting technique, (4) can be

where 1 = p/u is another penalty parameter related to u
and y . The degradation model ® and HSI prior R(H) can be
considered individually due to the variable splitting technique.

Considering the X-subproblem, instead of directly solving
the X-subproblem as a least-squares problem, an approxi-
mate solution updated by the gradient descent algorithm is
employed in this article as follows:

&k+1

F = XK o[0T (@XF — ¥) + (X — HY))

=[(1 —e)] — e®" @|X* + @'Y +epH". (7)

As described in [33], the H-subproblem in (6) can be
rewritten as

k41

71 |H - X'+ R(H). 8

1

= argmin NP

Equation (8) can be regarded as denoising (both in spatial
and spectral domain) images with the noise level of +/1/2
with the constraint of HSI priors. Also, the prior includes two
meanings: one is the restraint on spatial information, for exam-
ple, clearer edges, texture features, local smoothness, nonlocal
self-similarity, and non-Gaussianity; the other is the restraint
on spectral information, such as sparsity and high correlations
between spectra. Unlike the total variation or sparsity prior,
the HSI prior contains more than one property, which should
be modeled with nonlinearity to increase the accuracy [33].

With good nonlinear learning ability, deep learning-based
methods are proved to be capable of many image restoration
tasks. In this article, an SSN is proposed to achieve the
optimization as (8) describes because of the nonlinearity of
HSI prior. By extracting spatial and spectral information,
the intermediate results are updated following the constraint
of (6). Thus, the optimization of H is rewritten as

= Spa_Spec(X*) )
where Spa_Spec(-) presents the SSN. The details will be
described in Section II-B. With a new way of updating H,
the original optimization method, which alternatively updates

H and X until convergence, can be rewritten to a unified
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Fig. 2. IRN block.
updating of X. Considering (7) and (9), reformulated opti-
mization is as follows:

1 dxt ey + e p1-Spa_Spec(X*)

X (10)
where ® = (1 —eu)I —e®” ® indicates a new transformation
matrix to the intermediately reconstructed image X*.

With the help of the gradient descent algorithm and the HSI
prior, the proposed method is to update the intermediate X*
with a linear combination of three parts, including the initial
restoration ®7Y, the transformed X*, and the spatial-spectral
prior to X*. The initial restoration ®”Y and ® and parameters
¢ and u are also replaced with convolutional layers because
CNN has been employed to model the HSI prior, which is as
follows:

£ = T(X*) + ¢ - IRN(Y) + eu-Spa_Spec(X*)  (11)

where T(-) presents the transformation layer of X*. One
convolutional layer is utilized in this article. IRN(-) indicates
the initial restoration network block. All parameters, namely,
¢ and u, are learned by CAMs. Details are presented later.

B. SRF-Guided Initial Restoration

As described in Section I, the SRFs can provide spectral
relevance between MS and HS bands from an imaging point
of view. Therefore, unlike the traditional deep learning-based
methods, SRF guiding is introduced as an auxiliary operation,
which can realize effective SSR performance. Auxiliary phys-
ical operations give a great deal of assistance to deal with
image restoration in many types of research [40]-[43]. In the
proposed CNN, a new SRF-guided IRN block is proposed to
group bands by spectral radiation characteristics and recon-
struct the initial SSR result X with different operators. The
SRF-guided initial restoration network is shown in Fig. 2.

The whole block is a two-layer CNN. Also, the recon-
struction convolutional layers for different spectral ranges
are identified separately using SRF as a guide. Details are
as follows. First, the spectral gradients of RGB/MS images
are computed to construct a data cube with a dimension of
W x H x (2¢ — 1), as shown in Fig. 3.

After that, the data cube is fed into a 3 x 3 convolutional
layer to extract spectral features. These features are then
fed into SRF-guided convolutional layers by grouping with
spectral relevance according to SRFs. The spectral grouping is
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Fig. 3. Spectral gradient computation.

Fig. 4. SSN.
used to avoid reconstruction distortion caused by the excessive
spectral difference between different channels. Nevertheless,
it seems inevitable that there still will be some differences
between bands in the same group. The proposed strategy
ensures that intragroup bands reconstruction is determined by
the same combination of multispectral channels. By roughly
representing spectral relevance from the similarity of imaging
according to SRFs, SRF-guided convolutional layers do not
have to be adjusted for the same sensor, which improves the
generalization of this module.

For example, in the CAVE data set, which consists of
RGB images and HSIs with 31 bands, spectral ranges can
be divided into three groups based on the band contribution in
RGB imaging, including only contributing to the blue band,
having contribution to blue and green bands, and contributing
to green and red bands, which is proved to be the best
by vast experiments. Then, the grouped spectral features are
fed into convolutional layers. Therefore, SRF-guided convo-
lutional layers play a role as spectral grouping restoration.
In other words, HS channels with high spectral relevance will
be constructed by the same convolution operator group.

With SRF as a guide, the IRN block can group the spectral
bands with a high spectral correlation. This grouping avoids
the introduction of irrelevant spectral information that disrupts
spectral restoration.

C. Deep Spatial-Spectral Prior

As discussed in Section II-A, the HSI prior can be modeled
by an SSN, which is shown in Fig. 4. The SSN comprises two
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Fig. 5.

subnetworks in series: one for spatial information extraction
and the other for spectral feature extraction.

The intermediate reconstructed HSI is fed into the first
3 x 3 convolutional layer to compute for additional feature
maps considering the influence of spatial neighborhood and
transform the HSI data into a high-dimensional space. This
transformation provides additional extracted features to the
subsequent learning of spectral information. The second 3 x 3
convolutional layer is used as a selection for the next spectral
optimization from the redundant features; besides, reducing
the number of feature maps can accelerate the network cal-
culation [44]. The last 1 x 1 convolutional layer achieves the
fine-tuning of each spectral vector pixel-by-pixel. With the
data-driven training, fine-tuning can be learned as spectral
optimization processing. Furthermore, the 1 x 1 convolutional
layer can significantly improve the effect of low-level image
processing, which can further facilitate SSN learning of the
HSI prior [45]. A skip connection adding the input to the
output of the spatial network is also applied. This connection
can accelerate network computation and simultaneously force
the network to provide further attention to the changing details.

Equipped with SSNs, the proposed method can implicitly
introduce an HS prior to further constrain the solution space
and achieve improved SSR results.

D. Optimization Stages in HSRnet

With the application of the gradient descent algorithm and
deep spatial-spectral prior, the SSR problem can be solved
by updating X as (11), which is regarded as an optimization
process. When the optimization is unfolded, a network com-
prising multiple stages can serve as an alternative to achieve
optimization update in a deep learning manner, as shown in
the optimization stages in Fig. 5.

The original RGB/MS image Y is first fed into the IRN
block for an initial estimation X° = IRN(Y). Given the initial
HSI restoration X, the iterative optimization, which can be
trained to learn the HSI prior and match the spectral degrada-
tion model simultaneously, can be modeled in a feedforward
manner. Three parts are needed for the kth updating as shown
in (11). The first term is T(X*7!), a spectral transformation
preceding X*~!, which is computed by a convolutional layer
with a size of C x 3 x 3 x C. The second term is &-IRN(Y),
which is the weighted initial estimation X° by ¢. The last is
eu - Spa_Spec(X*~1), the eu-weighted result of H*, which
is the result from X*~!, fed into the SSN for the HSI prior.

4217

MeanPooling
= - —
MaxPooling
R - »

Fig. 6. CAM block.

The parameters ¢ and u are learned by a block with attention
mechanism. Details are provided later.

E. Attention-Based Parametric Self-Learning

The step size ¢ and the balance parameter u change
accordingly in each iteration to optimize the intermediate
variable X* iteratively. All the parameters in this article can
be learned due to the backpropagation in training, which is
a data-driven manner without manual intervention. However,
parameters in traditional methods are all similar for different
spectral channels. This similarity may be an inappropriate
way for spectral bands with different radiance characteristics
because of different optimal signal-to-noise ratios and different
spectral information introduced in the input data. Considering
the radiance differences in different bands and the good per-
formance in the channel weighting of CAM, the CAM blocks
are applied to the proposed HSRnet, as shown in Fig. 6. CAM
can help HSRnet focus on bands that need urgent optimization
with high weights by exploiting the interchannel relationship
of features.

The CAM block comprises two pooling layers with max
pooling and mean pooling, two 3 x 3 convolutional layers,
and a sigmoid function. First, the reconstructed HSI is fed
into the pooling layer to extract global weights. After pooling
layers, the global weights are forwarded to two convolutional
layers and summed. Finally, the channel weights are activated
by a sigmoid function before elementwise multiplication.

Introducing channel attention, HSRnet can easily learn
different parameters as a vector of each iteration rather than
a fixed value. This condition can ensure the adaptive weight
adjustment of the network in spectral optimization and the
realization of an improved reconstruction effect.
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TABLE I
RUNNING TIME OF DIFFERENT LOSSES
With CPU With GPU
SAM Loss 2.6642 s -
Proposed Loss 1.4611s 0.03748 s

F. Fast Joint Spatial-Spectral Loss

The L1 loss and SAM loss functions are applied in this
article as shown in the following to enhance spectral resolution
and preserve the spatial detail simultaneously

WH v
N X' x/
L:|X—X|+a E cos™! — (12)
j=1 XX VXX

where X is the reconstructed HSI, X is the ground truth, X’
presents the recovered spectral vector in jth pixel, X/ is the
ground truth, and « is a balance parameter. However, the appli-
cation of SAM loss is difficult in practice due to computational
complexity and the inability of GPU-accelerated computation
as a vector form. Inspired by [46], a transformed RMSE loss
is utilized, which is shown as

. 1 1
L:|X—X|+acos 1—5

i - X’Hz) (13)

where X' is the reconstructed HSI unitized pixel-by-pixel and
X’ is the unitized ground truth.

Thus, SAM loss can be calculated as a tensor form. This
calculation allows parallel computation with GPU, which will
be swift in learning as shown in Table 1.

III. EXPERIMENTAL RESULTS
A. Experimental Setting

1) Comparison Methods: The proposed method is com-
pared with the related algorithms of SSR without HSI required
as input, including Arad [18], A+ [19], DenseUnet [28],
CanNet [29], HSCNN+ [30], and SRCNN [31]. The compared
methods involve the dictionary and deep learning-based meth-
ods, which are currently state of the art in SSR. The models
of A+ and Arad are reproduced through a program coded by
Wu et al. [19].

2) Quantitative Metrics: Four quantitative image quality
metrics, including correlation coefficient (CC), peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [48], and
SAM [49], are utilized to evaluate the performance of all
comparison methods quantitatively. CC, PSNR, and SSIM are
indexes that show the spatial fidelity of the reconstructed HSIs,
which are computed on each channel and averaged over all
spectral bands. Results with their large values indicate that the
method is effective for maintaining spatial detail. Meanwhile,
SAM evaluates the spectral preservation of the algorithms,
showing improved spectral fidelity when the SAM is small.

3) Implementation Detail: The optimization stage number k
is set to 9, which shows the best SSR effect among the follow-
ing tests. The learning rate is set to 0.001, and the gradient-
based optimization algorithm based on adaptive estimates of
low-order moments (Adam [50]) is employed to train HSRnet.
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TABLE II

NUMERICAL COMPARISON OF FOUR QUANTITATIVE IMAGE QUALITY
METRICS BETWEEN RESULTS ON THE CAVE DATA SET

Methods CC PSNR SSIM SAM
Arad 0.9486 244613 0.7913  21.3129
A+ 0.9873  32.8830 0.9297  20.5403
DenseUnet  0.9907 32.5510 0.9642 8.1915
CanNet 0.9925 33.5975 0.9685 8.6435
HSCNN+ 0.9934 344354 0.9766 7.8048
sRCNN 0.9916 343669 0.9731 9.0175
HSRnet 0.9935 34.4903 0.9771 7.6208

The tradeoff parameter o for the loss function is set to 0.0001.
The models are trained by the Pytorch framework running
in the Windows 10 environment with 16-GB RAM and one
Nvidia RTX 2080 GPU.

4) Experimental Data Set: The proposed HSRnet is evalu-
ated by using the HSIs from CAVE [47] and remote sensing
data sets.

a) CAVE Data Set: CAVE data set, which comprises
32 scenes with a size of 512 x 512, is a popular HSI data set
in HSI processing. All the HSIs in the CAVE data set cover
the spectral range from 400 to 700 nm with a 10-m spectral
resolution containing 31 bands. Moreover, the RGB images
covering the same scene as HSI data are available.

A total of 26 HSIs and the corresponding RGB images
are randomly selected to prepare the training samples, and
each image is split into 16 patches with a size of 128 x 128.
Data augmentation is employed in this experiment because
the insufficient training data are unfavorable to model train-
ing. The original training samples are flipped and rotated to
increase the training data by eight times. The six remaining
images are utilized for the test. The test images are shown in
Fig. S1, which is in the Supplementary Material.

b) Remote Sensing Data Set: i) Sen2OHS Data Set:
Images from four Chinese Orbita hyperspectral satellites
(OHS) with 10-m spatial resolution are selected as HSIs to
build a remote sensing data set. OHS captures the HSIs in the
spectral range from 400 to 1000 nm with 2.5-nm increments,
but the HSI data sent to users are sampled to 32 bands.

The rich spectral information in OHS data with the 10-m
spatial resolution is of considerable importance for applica-
tion. However, free OHS data are mostly unavailable because
of commerciality. This unavailability limits the HS data
sources for researchers. Meanwhile, some MS images, such as
Sentinel-2 bands with the same spatial resolution as OHS data
(bands 2—4 and 8), are available for free. Thus, the Sen20OHS
data set is simulated to evaluate the SSR effect of the proposed
model on the remote sensing data.

Sentinel-2 MSIs are simulated from OHS HSIs by using
Hysure [38] with the SRF of Sentinel-2 and OHS-A to
reduce the errors caused by geographic registration and
the inconsistency of acquiring time between Sentinel-2 and
OHS data. Furthermore, 6000 OHS HSIs with a size
of 128 x 128 are selected for training from the Competition
in Hyperspectral Remote Sensing Image Intelligent Process-
ing Application.! The location of these images is shown in

The data set can be download at https://ohs.obtdata.com/#/dataDownload
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Fig. 7. Absolute differences of “Lemon Slices” image from the CAVE data set. Along 450, 500, 550, 600, 650, and 700 nm, the absolute differences between

the reconstructed images and the ground truth are given. Each row from top to bottom is the result of Arad, A+, DenseUnet, CanNet, HSCNN+, sSRCNN,
and the proposed HSRnet.

Fig. S2 in Supplementary Material. And the testing images
are randomly selected in Xiongan New Area, Hebei Province,
China, as shown in Fig. S3.

ii) HR Simulation Data Set Based on Sen2OHS: Besides,
to better verify the performance of models restoring spectral
channels at different scales, three more data sets with an HR
are also simulated based on Sen20OHS, including Xiongan,

Washington dc Mall, and Chikusei. Partial data of them are
shown in Fig. S4 in Supplementary Material. The Xiongan
data set was an aerial image covered rural in Matiwan Village,
Xiongan New Area, China, with a size of 3750 x 1580. The
spectral range of the Xiongan data set is 400-1000 nm, with
250 bands and a spatial resolution of 0.5 m. The Washington
DC Mall data set [51] was acquired by the HYDICE airborne

Authorized licensed use limited to: Wuhan University. Downloaded on September 02,2022 at 01:17:40 UTC from IEEE Xplore. Restrictions apply.
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(d)

Reflectance of “Lemon Slices” images from the CAVE data set at the fake and real lemon locations. (a) Reflectance at the real lemon slice location.

(b) Real lemon slice location. (c) Reflectance at the fake lemon slice location. (d) Fake lemon slice location.

sensor and with a size of 1280 x 307 x 210, covering the
spectral wavelength from 400 to 2500 nm, and the spatial
resolution is lower than Xiongan and close to Chikusei. The
Chikusei data set was taken by the Headwall Hyperspec-
VNIR-C imaging sensor over agricultural and urban areas in
Chikusei, Japan, with a size of 2517 x 2335 [52]. It contains
128 spectral bands ranging from 363 to 1018 nm with a
spatial resolution of 2.5 m. In the experiments, the spectral
channels are downsampled to the same of OHS and Sentinel-
2 by Hysure.

B. Results on CAVE Data Set

1) Quantitative and Visual Results: The quantitative results
over six testing images are shown in Table II, where the
best results are in red bold and the second best is in blue.
From the four quantitative image quality indexes, the deep
learning-based methods show more remarkable amelioration
in the spectral preservation than that in dictionary learning-
based methods. Moreover, A+ performs well in spatial fidelity
and is more highly improved compared with Arad. Also,
the proposed HSRnet shows superior performance in spatial
and spectral evaluation simultaneously.

In comparison to dictionary learning-based methods,
the HSRnet achieves an average of 63.57% reduction in
SAM and an average of 22.94% increase in PSNR. These
findings illustrate that HSRnet can achieve effective spec-
tral enhancement and maintain spatial information. Com-
pared with other deep learning-based methods, HSRnet still
shows some advantages in all indexes. HSCNN+ and sSRCNN
also show good spatial fidelity but get a worse spectral
evaluation.

Difference maps (DMs) between the reconstruction results
and the ground truth are constructed to evaluate the results

TABLE III

NUMERICAL COMPARISON OF FOUR QUANTITATIVE IMAGE QUALITY
METRICS BETWEEN THE METHODS IN THE SEN2OHS DATA SET

Methods CC PSNR SSIM SAM
Arad 0.8149 22.4581 0.5631 11.0670
A+ 0.8592 24.4238 0.6924 9.5847
DenseUnet 0.9498 26.7262 0.8769 8.3135
CanNet 0.9621 28.1981 0.8901 7.4233
HSCNN+ 0.9593 28.8117 0.9164 6.9076
sRCNN 0.9689 29.2940 0.9389 6.5788
HSRnet 0.9725 28.9801 0.9344 6.8410

intuitively, as shown in Fig. 7. Six channels with wave-
lengths of 450, 500, 550, 600, 650, and 700 nm are selected.
Fig. 7 shows that Arad’s result shows poor performance in
spatial detail, as indicated in the background and the lemon
pulp among all the presented bands. A+ obtains a better effect
compared with that of Arad and even better than DenseUnet
at some bands, such as 450 and 550 nm. CanNet shows a high
difference in the edges. HSCNN+- can get good performance
in several bands. However, HSRnet obtains DMs with the
lowest value, which indicates that HSRnet achieves the best
performance in SSR. As seen in DMs, HSRnet can adaptively
accomplish spectral enhancement of different targets on the
palette or the lemon slice. All methods perform poorly at
the wavelength of 700 nm because of the insufficient spectral
information.

2) Discussion on Fake and Real Lemon Slices: Because
there are fake and real lemon slices in the testing images, the
reconstruction effects of methods at fake and real lemon slices
are also presented. As shown in Fig. 8, the reflectance of real
and fake lemon slices completely varies among bands 15-31,
namely the wavelength from 540 to 700 nm. The spectral curve
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Fig. 9.

Absolute differences of “Urban” image from the Sen20OHS data set. Along with bands 5, 10, 15, 20, 25, and 30, the absolute differences between

the reconstructed images and the ground truth are given. Each row from top to bottom is the result of Arad, A+, DenseUnet, CanNet, HSCNN+-, sSRCNN,
and the proposed HSRnet.

of real lemon still increases after band 15. However, the spec-
tral curve of fake lemon initially drops and then rises. In this
case, deep learning-based methods can adaptively reconstruct
the spectral detail of fake and real lemon slices separately. This
reconstruction benefits from the powerful learning capability
of CNNs, but Arad and A+ show poor performance in these
bands. Although other deep learning-based algorithms can

Authorized licensed use limited to: Wuhan University. Downloaded on September 02,2022 at 01:17:

achieve good performance on distinguishing the spectrum of
fake and real objects, the results of HSRnet show the highest
similarity to the ground truth.

C. Results on Remote Sensing Data Set

The proposed model is also verified on the remotely sensed
data set. Furthermore, four quantitative image quality indexes

UTC from IEEE Xplore. Restrictions apply.
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(a) Average error of the results on the “Urban” image. Framed by magenta, results on bands 9-21 of all methods show a poor tendency because of

limited related spectral information in the input Sentinel-2 data. (b) Different SRFs of Sentinel-2 and OHS-A, which are used to help explain the phenomenon

presented in (a).

are employed to evaluate experimental results in the simulated
experiments, including Sen2OHS data set and three HR sim-
ulation data sets. After the simulated experiments, the trained
model will be utilized to enhance the spectral resolution of
real Sentinel-2 data. Moreover, a classification is presented to
demonstrate the reliability of the reconstructed HSIs.

1) Quantitative and Visual Results:

a) Sen20OHS Data Set: Table III shows the quantitative
assessment results of testing images in the Sen2OHS data set.
In contrast to the natural images, targets in remote sensing
images are various and complex, resulting in poor spatial
fidelity for all methods. The spectral preservation is improved
because of the less color variation between targets than natural
images. A+ and Arad show a sharp decline in CC, PSNR, and
SSIM, which indicates a poor generalization effect. It is noted
that the training samples of Arad and A+ are the same as those
of deep learning-based methods, which are not divided into
different domains unlike that of the CAVE data set because
an effective model should be able to reconstruct images in
different scenes adaptively with unified training samples.

The proposed HSRnet improves the average CC, PSNR, and
SSIM value by 16.18%, 23.63%, and 48.85%, respectively,
compared with Arad and A+. The improvement of SAM is
beyond 33.75%. Compared with four deep learning methods,
HSRnet shows a certain advantage in both spatial fidelity
and spectral preservation. Surprisingly, SRCNN gains a tiny
advantage over HSRnet, which is benefited by the spectra-by-
spectra band optimization with huge computation.

The DMs of the selected testing image named “Urban”
are shown in Fig. 9. Six bands, including bands 5, 10, 15,
20, 25, and 30, are displayed. The “Urban” image comprises
rivers, farmlands, buildings, and other features, providing a
considerable challenge to SSR. From the DMs of band 30,
the spectral enhancement of farmlands with regular geometric
shapes but diverse color brightness is difficult for dictio-
nary learning-based methods. However, the sporadic buildings
obtain improved spectral fidelity in A+ and Arad. For deep
learning-based methods, with strong learning capability of
different features, recovering the target with regular geometric
shapes is easy, such as farmlands, streets, and rivers, but
the recovery of various buildings, as shown in the results
of deep learning-based methods on bands 20 and 30, shows

TABLE IV

NUMERICAL COMPARISON OF FOUR QUANTITATIVE IMAGE QUALITY
METRICS BETWEEN THE RESULTS ON THREE HR SIMULATION DATA

SETS

Dataset Method CC PSNR SSIM SAM
DenseUnet  0.9847 42.4634 0.9814 0.9217

CanNet 0.9946 48.3492 0.9950 0.8029

Xiongan HSCNN+ 0.9942 48.4972 0.9959 0.7888
sRCNN 0.9954 49.8814 0.9973 0.7623

HSRnet 0.9963 50.7362 0.9973 0.7196

DenseUnet  0.9927 39.7343 0.9848 1.8808

Washington CanNet 0.9987 47.8736 0.9971 1.1805
DC Mall HSCNN+ 0.9986 47.5770 0.9972 1.0983
SRCNN 0.9989 48.5363 0.9978 1.0179

HSRnet 0.9992 50.4457 0.9983 0.9395

DenseUnet  0.9897 39.2096 0.9809 4.0650

CanNet 0.9967 44.2579 0.9933 3.6732

Chikusei HSCNN+ 0.9947 42.5542 0.9908 3.4254
sRCNN 0.9955 43.4017 0.9924 3.5490

HSRnet 0.9968 44.7133 0.9941 3.4528

unsatisfactory effect. This may be due to the inconsistently
different geometric shapes of the same ground feature, which
confuses CNN and mistakes them as different features. How-
ever, the results of the proposed HSRnet show lower error
and less detail loss. Although sSRCNN gets the best quantita-
tive indexes, HSRnet shows more balanced visual results in
different bands.

Fig. 10(a) shows the average error of compared methods.
The curve trend indicates that the SSR effect of the bands
at the edge of the spectral coverage is worse than that of
other bands. This finding has also been verified on the CAVE
data set, which is due to the limited spectral information of
bands at the edge of the spectral range obtained from the input
MSIs. Furthermore, all the compared methods yield slightly
worse results on bands 9-21, as framed by magenta. As shown
in Fig. 10(b), the spectral range of Sentinel-2 and OHS-A is
incompletely covered. Bands 9-12, 16-20, and 30-32 of the
OHS data are not covered by Sentinel-2 SRF, thus yielding
bands with poor spectral fidelity. However, with the SRF as
a guide, HSRnet has good spectral reconstruction capability
when spectral information of the relevant bands is deficient,
which is shown in the figure with lower average errors in the
form of fluctuations instead of a surge.
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Fig. 11.

b) HR Simulation Data Sets: To further compare the
effect of the deep learning-based methods in different scales,
synthetic data sets with finer spatial details, including Xiongan,
Washington DC Mall, and Chikusei, are utilized. Quantitative
results are shown in Table IV.

On these HR data sets, SSR becomes easier to achieve.
With purer spectral information in HR training samples, deep
learning-based methods can recover spectra more accurately,
as shown in Table IV. Also, SRCNN shows good applicability
in remote sensing data sets because of spectra-by-spectra
optimization steps. Compared with sSRCNN, the proposed
HSRnet can get better performance with lower computational
complexity. With the results of data sets at four different scales
in remote sensing, the proposed HSRnet shows great stability
and superiority over other deep learning-based algorithms in
spectral fidelity.

2) Classification Results on Real Data: Due to the good
performance demonstrated on the remote sensing data set,
the trained HSRnet model is used on real Sentinel-2 data
with a 10-m spatial resolution to verify the reliability of
the increased spectral information compared with the original
MSI. We choose the classification experiments to evaluate
it. The image is selected in the south of Nantes, France,
with a size of 512 x 512. The comparison results are shown
in Fig. 11. The HSI is displayed with bands 27, 13, and 8 and
the real Sentinel-2 data is shown with bands 8, 4, and 3, where
the vegetation is red.

The features are classified into 16 classes by using the sup-
port vector machine (SVM), as shown in the legend in Fig. 11.
Additional spectral information is introduced to help combine
the adjacent similar objects, and the classification results of
the reconstructed HSI show less discrete objects.

The quantitative evaluation also shows that the increased
spectral information recovered by HSRnet can help classi-

4223

= Water
=/ Shrubby Savannah
- Gras
Coniferous Forest
Broad-leaved Forest
™ Orchards
= Pasture
= Tubers/Roots
- Corn
= Sunflower
Soja
| Beans
= Cereals
Rape
Commercial Area
Buildings

Classification comparison on the real Sentinel-2 data and the reconstructed HSI by HSRnet. (a) Original Sentinel-2 data. (b) HSI reconstructed by
HSRnet. (c¢) Original classification. (d) Classification of the reconstructed HSI.

TABLE V
OVERALL ACCURACY AND KAPPA COEFFICIENT OF CLASSIFICATIONS
OA Kappa
Original MSI 70.74% 0.6296
Reconstructed HSI 73.22% 0.6619

fication, as presented in Table V. The classification results
demonstrate the improvements in OA and Kappa due to the
additional spectral information in the reconstructed HSI. This
improvement indicates that the proposed SSR method can
accurately recover spectral information on the real data set.

D. Discussion

This section discusses the reliability of the proposed HSR-
net, including ablation study and computational speed analysis.

1) Ablation Study: The efficiency of the strategies of the
proposed HSRnet, including optimization stages, parametric
self-learning based on CAM, SRF-guided initial restoration
network, and fast joint spatial-spectral loss, is first discussed,
as shown in Table VI. A 19-layer Resnet [24] is chosen as
a baseline. OS, CAM, SRF, and SAM Loss represent the
aforementioned strategies, and the details will be provided
later.

a) Optimization Stages: Compared with Resnet, HSRnet
with only optimization stages (namely, HSRnet w/o CAM
in Table VI) shows substantially high superiority in spatial
and spectral fidelity. Compared with DenseUnet, the proposed
network with physical interpretability shows a slight advantage
without the help of other strategies.

b) CAM: Comparing HSRnet without SRF with HSRnet
without CAM, HSRnet with parametric self-learning based on
CAM shows improved spatial fidelity and spectral enhance-
ment due to the capability to learn parameters adaptively for
different iterations and bands.
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IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

ABLATION STUDY OF THE PROPOSED STRATEGIES ON THE CAVE DATA SET

OS CAM SRF SAMLoss CC PSNR SSIM SAM
ResNet x x x x 0.9843 28.4483 0.9415 11.4720
DenseUnet - - - - 0.9907 32.5510 0.9642 8.1915
HSRnet w/o CAM N x x X 0.9919 33.3288 0.9674 8.2279
HSRnet w/o SRF v v x x 0.9930 34.2748 0.9741 8.0927
HSRnet w/o SAMLoss v V x 0.9933  34.3467 0.9742 7.8506
HSRnet \ \ V N 0.9935 34.4903 0.9771 7.6208

2 1 1 L L

~-With SRF__| |
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@

Fig. 12.
Sen20OHS data set.

PSNR of results reconstructed with SRF as a guide and without

¢) SRF-Guided IRN: With the SRF as a guide, HSRnet
shows tiny spatial improvements but substantially good spec-
tral maintaining as shown in the values of SAM (i.e., HSRnet
w/o SAMLoss in Table VI). Furthermore, the comparison
with HSRnet without SRF on the CAVE data set is shown
in Fig. 12. As shown in Fig. 12(a), the PSNR of results
reconstructed by the model with SRF as a guide is higher than
the model without an SRF guide. This finding shows that the
SRF guide can help HSRnet achieve improved performance.
Fig. 12(b) shows the same conclusion on the remote sensing

data set.
d) Spatial-Spectral Loss Function:

With SAMLoss,

the proposed HSRnet shows some improvement not only on
SAM but also on other metrics of spatial fidelity. It states
that considering the spectral loss with spatial loss function,
the spatial fidelity and spectral preservation can be mutually

reinforced.

2) Computational Speed Analysis: Deep learning-based
methods can achieve satisfying spectral enhancement on the
CAVE and Sen20HS data sets due to their strong nonlinear
mapping capability, and the parameter number is very impor-
tant to them. For example, as the parameter number increases,
CNN can reach effective performance without changing the
structure by computing additional features in convolutional
layers. Thus, the comparison between deep learning-based
methods in parameter number and running time is performed

with similar feature numbers.

Table VII lists the parameter numbers, floating-point oper-
ations (FLOPs), and training and test time of deep learn-
ing methods. Training and test time are all counted on the
CAVE data set. DenseUnet uses numerous parameters in
down-and-up stages due to dense blocks, while most effort
is put into optimization stages in HSRnet. Besides, CanNet

40 T T T T T T

~~With SRF | |
-e—Without SRF

5 10 15 20 25 30
Bands

(b)

SRF on two data sets. (a) Comparison on CAVE data set. (b) Comparison on

TABLE VII

COMPUTATIONAL SPEED ANALYSIS OF DEEP LEARNING-BASED METH-
0ODS ON THE CAVE DATA SET

DenseUnet sRCNN CanNet HSCNN+  HSRnet

Params  1360.1K  789.3K  163.0K  915.1K  769.7K

FLOPs 3.02x10" 5.96x10" 3.97x10'" 2.23x10" 1.79x10"

Training  68655s  146539s  49285s  57805s  30831s

Test 1.2598s  4.5950s  1.2387s  1.7996s  1.5364s
9.5

9

100 150
Epochs

0 50

200

Fig. 13. Validation loss of deep learning-based methods.

requires the least parameters because it works as a shallow
network. Although the parameter number in DenseUnet is
approximately twice as many as the proposed HSRnet in
total, HSRnet shows better performance in SSR compared with
DenseUnet. FLOPs show the algorithm complexity by FLOPs.
With pixel-by-pixel optimization, SRCNN gets the highest
FLOPs although the parameter number is similar to HSRnet,
which leads to a long running time. DenseUnet benefits from
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Partially enlarged details of the results on “Hair” and “Industrial District” image. (a) Reference “Hair” image in the CAVE data set is shown by

bands 14, 7, and 2. (b) Result of DenseUnet is shown by the same band combination. (c) Result of HSRnet. (d) Ground truth of the “Industrial District”
image in the Sen20OHS data set is shown in bands 14, 7, and 2. (e) Result of DenseUnet shown by the same band combination. (f) Result of HSRnet.

the downsampling and upsampling to get the fewest FLOPs.
Although DenseUnet can train an epoch faster than HSRnet,
it converges at 200 epochs. Without downsampling to fast
calculation, HSRnet spends more training time in each epoch
but converges earlier than that of other networks, as shown
in Fig. 13.

As discussed above, DenseUnet can accelerate the cal-
culation by downsampling the input images. However, this
acceleration compromises spatial details, as shown in Fig. 14.
Whether on the CAVE or Sen20HS data set, DenseUnet
shows spatial blurry effects, whereas HSRnet can maintain
good spatial fidelity with rich details, such as the cylindrical
buildings in Sen20HS results and the clear letter edges in
CAVE results. Furthermore, the HSRnet results suffer from
mild spatial degradation on the Sen2OHS data set. Notably,
the spatial resolution of the captured OHS-A data is not
accurately 10 m. This value is slightly coarser than that of
Sentinel-2, resulting in spatial degradation.

The proposed HSRnet has acceptable parameter numbers
and computation complexity but gets the best SSR perfor-
mance. Furthermore, considering the effect and running time,
HSRnet maintains more spatial details using fewer parameters
and acceptable test time. Furthermore, HSRnet realizes early
convergence, although the training time of HSRnet is longer
than that of other methods in one iteration, resulting in less
total training time. Thus, a conclusion can be drawn that
building CNN with physical logic is superior to using data-
driven CNN.

IV. CONCLUSION

This article presents an SRF-guided optimization-driven
SSR network with spatial-spectral prior to enhance the
spectral information of the MS/RGB image. The traditional
gradient descent-based algorithm is transformed into an end-
to-end CNN with the help of deep spatial-spectral prior.
The proposed HSRnet> groups the spectral similar bands

>The code can be found at https:/github.com/JiangHe96/HSRnet

using the physical information and the SRF to reconstruct
different spectral ranges instead of the traditional black-box
data-driven CNN. Using the CAM blocks to learn parameters
rather than a manual setting can automatically adjust the
weights for different channels rather than a fixed value to
the entire image. Moreover, the proposed HSRnet transforms
the optimization model into a data-driven model. This model
provides CNN with physical interpretability and facilitates
flexible learning of optimization parameters in an end-to-end
manner. Experimental results on natural and remotely sensed
data sets confirm the feasibility and superiority of the proposed
method. Furthermore, as shown in both data sets, especially
in Sen2OHS data set, the spectral coverage between input and
output data plays an important role in the model effect. Thus,
the effective utilization of MS bands with different spatial
resolutions to reach complete coverage of spectral information
and achieve spatial-spectral SR is a direction of our future
works.
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